Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.

Slides:



Advertisements
Similar presentations
Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Two Major Open Physics Issues in RF Superconductivity H. Padamsee & J
Soft phonon mode and superconducting properties of 2H-NbS2
The “normal” state of layered dichalcogenides Arghya Taraphder Indian Institute of Technology Kharagpur Department of Physics and Centre for Theoretical.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
1 S. Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia S. Charfi-Kaddour LPMC, Faculté des Sciences de Tunis, Tunisia M. Héritier.
Microscopic structure and properties of superconductivity on the density wave background P. D. Grigoriev L. D. Landau Institute for Theoretical Physics,
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Emergent phenomena at oxide interfaces Chen Ke, Liu Donghao, Lv Peng, Shen Bingran, Yan Qirui, Yang Wuhao, Ye Qijun, Zhu Chenji Nov. 19 th.
Highlights on Some Experimental Progress of FeSe Xingjiang ZHOU 2014/10/08.
Interlayer tunneling spectroscopy of NbSe 3 and graphite at high magnetic fields Yu.I. Latyshev Institute of Raduio-Engineering and Electronics RAS, Mokhovaya.
Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis (Tunisia) Collaborator Samia Charfi-Kaddour (LPMC, Tunisia) Besma Bellafi (LPMC,
Domain walls at the SDW endpoint of (TMTSF) 2 PF 6 under pressure C.Pasquier, Laboratoire de Physique des Solides, Orsay S. Brazovskii LPTMS, Orsay Acknowledgments:
Magnetocapacitive effect in SDW system (TMTSF) 2 AsF 6 D. Starešinić, D. Dominko, K. Biljaković Institute of Physics, Zagreb, Croatia P. Lunkenheimer,
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
Pavel D. Grigoriev L. D. Landau Institute for Theoretical Physics, Russia Consider very anisotropic metal, such that the interlayer tunneling time of electrons.
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
Hidden Reentrant and Larkin-Ovchinnikov- Fulde-Ferrell Phase in a Magnetic Filed in (TMTSF) 2 ClO 4 ECRYS (August 17 th 2011) Andrei G. Lebed Department.
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
A. Sinchenko, National Research Nuclear University MEPhI, Moscow
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Shimizu-lab M-1 Kubota Kazuhisa
Fluctuation conductivity of thin films and nanowires near a parallel-
Some Igor Schegolev and Chernokolovka Recollections: Igor visited Gor’kov at the NHMFL in the early 90’s: Learned about “Igor” software.  -(BEDT-TTF)
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Superconducting Gap Symmetry in Iron-based Superconductors: A Thermal Conductivity Perspective Robert W. Hill.
Interplay of Magnetic and Superconducting Proximity effect in F/S hybrid structures Thierry Champel Collaborators: Tomas Löfwander Matthias Eschrig Institut.
Crystal structure, T-P phase diagram and magnetotransport properties of new organic metal Crystal structure, T-P phase diagram and magnetotransport properties.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Confinement of spin diffusion to single molecular layers in layered organic conductor crystals András Jánossy 1 Ágnes Antal 1 Titusz Fehér 1 Richard Gaál.
Search for superconductivity in CrB 2 under pressure 29A13025 Shimizu Lab Kaide Naohiro.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
Shimizu Lab. M1 Takuya Yamauchi
PseudoGap Superconductivity and Superconductor-Insulator transition In collaboration with: Vladimir Kravtsov ICTP Trieste Emilio Cuevas University of Murcia.
Anisotropic Superconductivity in  -(BDA-TTP) 2 SbF 6 : STM Spectroscopy K. Nomura Department of Physics, Hokkaido University, Japan ECRYS-2008, Cargese.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
Transport in three-dimensional magnetic field: examples from JT-60U and LHD Katsumi Ida and LHD experiment group and JT-60 group 14th IEA-RFP Workshop.
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Theory of induced superconductivity in graphene
Emergent Nematic State in Iron-based Superconductors
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer, CEA - Grenoble T. Baturina, Institute of semiconductor Physics - Novosibirsk V. Vinokur, Material Science.
Superconducting Cobaltites Nick Vence. Definition A material which looses its electrical resistivity below a certain temperature (Tc)is said to be superconducting.
Unusual magnetotransport properties of NbSe 3 single crystals at low temperature A.A.Sinchenko MEPhI, Moscow, Russia Yu.I.Latyshev, A.P.Orlov IRE RAS,
1 Non-uniform superconductivity in superconductor/ferromagnet nanostructures A. Buzdin Institut Universitaire de France, Paris and Condensed Matter Theory.
Spectral function in Holographic superconductor Wen-Yu Wen (NTU) Taiwan String Theory Workshop 2010.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Igor Lukyanchuk Amiens University
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Magnetic field induced charge-density-wave transitions: the role of orbital and Pauli effects Mark Kartsovnik Walther-Meißner-Institut, BADW, Garching,
UC Davis conference on electronic structure, June. 2009
High Temperature Superconductivity
FSU Physics Department
Pressure-induced Superconductivity in CaFe2As2 -JPCM 20, (2008)
Presentation transcript:

Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark Kartsovnik Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching, Germany Ilya Sheikin Laboratoire National des Champs Magnétiques Intenses, Grenoble, France Harald Müller European Synchrotron Radiation Facility, Grenoble, France Natalia Kushch Institute of Problems of Chemical Physics, Chernogolovka, Russia

c a  -(BEDT-TTF) 2 KHg(SCN) 4 : basic features BEDT-TTF molecule: bis(ethylenedithio)-tetrathiafulvalene a b  || (300K)  10  20 m  cm   /  || ~ 10 4  10 5  a /  c  2  (300K) /  (1.4K) ~ 10 2 t || /t   670   ,coh /  ||  2.2  T. Mori et al., Bull. Chem. Soc. Jpn. 1990; R. Rousseau et al., J. Phys. I (France) 1996; P. Foury-Leylekian et al., PRB 2010

 -(BEDT-TTF) 2 KHg(SCN) 4 : basic features 2D Fermi surface  CDW formation at  8 K Nesting instability of the Fermi surface Q very low!! small  CDW  k B T CDW  high sensitivity to external conditions: pressure, magnetic field [P. Foury-Leylekian et al., PRB 2010]

Q+Q+ Q-Q- CDW in a magnetic field  Pauli paramagnetic effect: suppresses CDW [W. Dieterich & P. Fulde, 1973] 2BB/vF2BB/vF B Q - < Q + T CDW /T CDW (0), exp Phase diagram of  -(BEDT-TTF) 2 KHg(SCN) 4 P. Christ, W. Biberacher, M.K., et al., JETP Lett ~ 23 T T CDW /T CDW (0) Theory: A. Buzdin & V. Tugushev, JETP 1983 D. Zanchi et al., PRB 1996; P. Grigoriev & D. Lyubshin, PRB 2005 CDW x CDW 0 NM

CDW in a magnetic field  Orbital effect (requires an imperfectly nested FS): stimulates CDW

CDW in a magnetic field  Orbital effect (requires an imperfectly nested FS): stimulates CDW  y ~ 1/B z electrons become effectively more 1D Real space orbit:

D. Andres, M.K., et al., PRB 2001  -(BEDT-TTF) 2 KHg(SCN) 4 CDW in a magnetic field  Orbital effect (requires an imperfectly nested FS): stimulates CDW Theory: D. Zanchi et al., PRB 1996

R    (deg) CDW in a magnetic field  Orbital effect (requires an imperfectly nested FS): stimulates CDW Angle-dependent MagnetoResistance Oscillations (AMRO) in  -(BEDT-TTF) 2 KHg(SCN) 4 P > P c ambient pressure M.K. et al., SSC 1994 normal state CDW state normal state field-induced

D. Andres, M.K., et al., PRB 2001  -(BEDT-TTF) 2 KHg(SCN) 4 CDW in a magnetic field  Orbital effect (requires an imperfectly nested FS): stimulates CDW Theory: D. Zanchi et al., PRB 1996 FICDW at t  ’ > t  ’ * ??? L. Gor’kov & A. Lebed, J. Phys. Lett. (Paris) 1984

CDW in a magnetic field  Field-induced CDW (FICDW) transitions The “slow oscillations”  appear at P  P c  2.5 kbar  approximately periodic with 1/B SdHo  display a weak hysteresis P = 3 kbar Positions of the FICDW transitions can be fitted with t   0.5 meV [A. Lebed, PRL 2010]

CDW in a magnetic field  Field-induced CDW (FICDW) transitions A. Kornilov et al., PRB 2002 FICDW in  -(BEDT-TTF) 2 KHg(SCN) 4 FISDW in (TMTSF) 2 PF 6 A. Lebed, JETP Lett FICDW is weaker than FISDW due to the paramagnetic effect!

Superconductivity vs. CDW Sample #2: zero resistance but no Meissner! R  (Ohm) R  0 R = 0  Resistance at zero field See also: H. Ito et al., SSC (1993) – inhomogeneous superconductivity at P = 0

Superconductivity vs. CDW A. Kusmartseva et al., PRL 2009 Cu x TiSe 2 NbSe 3 S. Yasuzuka et al., J. Phys. Soc. Jpn R. Yomo et al., PRB 2005 ZrTe 3 (TMTSF) 2 PF 6 I. J. Lee et al., PRL 2002

Superconductivity vs. CDW  Onset of superconductivity

The SC onset temperature is 3 times higher in the SC/CDW coexistence region! The SC onset temperature is 3 times higher in the SC/CDW coexistence region! Superconductivity vs. CDW  Onset of superconductivity CDW+SC R = 0 R  0

Superconductivity in a magnetic field; P > P c  Critical field  layers at P = 3 kbar:   (0)  250 nm cf. mean free path  1  m

Superconductivity in a magnetic field; P > P c  Critical field // layers GL: H c2  (T c -T ) H p0 : Chandrasekhar-Clogston paramagnetic limit  dH c2 /dT  12 T/K   (0) = 1.0 nm  d/2;  || (0)/   (0)  250! 1.6H p0

Superconductivity in a magnetic field; P > P c T = 90 mK

Superconductivity in a magnetic field; P > P c Direct manifestation of the paramagnetic pair-breaking Direct manifestation of the paramagnetic pair-breaking!

Summary CDW state: rich phase diagram due to the interplay of Pauli paramagnetiorbital competing Pauli paramagnetic and orbital effects of magnetic field SC state: at P < P c : coexists with the CDW state; the SC onset temperature is drastically increased in the coexistence region; at P > P c : bulk SC state with a highly anisotropic H c2 near T c (0) and a clear paramagnetic pair-breaking manifestation of paramagnetic pair-breaking at H // layers.

CDW in a magnetic field  Field-induced density wave transitions, t  ’ >t  ’ *: B kFkF -k F Q x = 2k F + NG, G = ea y B z / 

CDW in a magnetic field  Field-induced CDW (FICDW) transitions 2Q P = MG N =3,43,42,32,3 1,21,2 0,10,1 0 Commensurate splitting (A. Bjelis et al., 1999; A. Lebed, 2003) “Spin-zero” 2Q P = (M + 1/2)G with M - integer

CDW in a magnetic field  Field-induced CDW (FICDW) transitions N = no Pauli effect (FISDW) Pauli effect on (FICDW) Q x = 2k F + NG Q x = 2k F  Q P + NG G = 2ea y B z /  Q P = 2  B B/  v F

CDW in a magnetic field  Field-induced CDW (FICDW) transitions 4 N = no Pauli effect (FISDW) Pauli effect on (FICDW) Q x = 2k F + NG Q x = 2k F  Q P + NG A. Lebed, JETP Lett. 78, 138 (2003) G = 2ea y B z /  Q P = 2  B B/  v F

CDW in a magnetic field  Field-induced CDW (FICDW) transitions Spin-zero condition:  v F  1.2  10 5 m/s

The SC onset temperature is 3 times higher in the SC/CDW coexistence region! The SC onset temperature is 3 times higher in the SC/CDW coexistence region! Superconductivity vs. CDW  Onset of superconductivity CDW+SC R = 0 R  0 Ginzburg-Levanyuk parameter: Gi (2) ~ Low Tc  weak fluctuations!

Superconductivity in a magnetic field; P > P c B (mT)  Critical field  layers

Superconductivity in a magnetic field; P > P c  Critical field // layers