S. Normand,1 V. Kondrasovs, 1 G. Corre, 1 J.-M. Bourbotte, 1 A. Ferragut 2 1 Laboratoire Capteurs et Architectures Electroniques 2 Saphymo 28-29 september.

Slides:



Advertisements
Similar presentations
Dante Nakazawa with Prof. Juan Collar
Advertisements

1 Introduction USG – 573 RMDS - Radioactive Material Detector System.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
Robert Johnson Faculty: Dr. Calvin Howell Grad Student: David Ticehurst Development of a Neutron Detector with Kinetic Energy Measurement Capability.
Neutron background measurements at LNGS Gian Luca Raselli INFN - Pavia JRA1 meeting, Paris 14 Feb
Coupling an array of Neutron detectors with AGATA The phases of AGATA The AGATA GTS and data acquisition.
Paul Sellin, Radiation Imaging Group Digital pulse shape discrimination applied to capture-gated neutron detectors P.J. Sellin, S. Jastaniah, W. Catford.
Design of a Control Workstation for Controller Algorithm Testing Aaron Mahaffey Dave Tastsides Dr. Dempsey.
Long Fiber-Optic Perimeter Sensor: Intrusion Detection W. Tim Snider, Faculty Advisor: Dr. Christi K. Madsen Texas A&M Department of Electrical and Computer.
S. Zuberi, University of Rochester Digital Signal Processing of Scintillator Pulses Saba Zuberi, Wojtek Skulski, Frank Wolfs University of Rochester.
Laboratoire de l’Accélérateur Linéaire (IN2P3-CNRS et Université Paris-Sud 11), Orsay, France Olivier Callot 21 September 2005 Calorimeter Configuration.
3/7/05A. Semenov Batch-by-Batch Intensity Monitor 1 Two-Channel Batch by Batch Intensity Monitor for Main Injector BBI.
Characterization of Silicon Photomultipliers for beam loss monitors Lee Liverpool University weekly meeting.
1 Scintillators  One of the most widely used particle detection techniques Ionization -> Excitation -> Photons -> Electronic conversion -> Amplification.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Electronics for PS and LHC transformers Grzegorz Kasprowicz Supervisor: David Belohrad AB-BDI-PI Technical student report.
20 F POWER MEASUREMENT FOR GENERATION IV SODIUM FAST REACTORS R. Coulon, S. Normand, M. Michel, L. Barbot, T. Domenech, K. Boudergui, J-M Bourbotte, V.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
Hadron Calorimeter Readout Electronics Calibration, Hadron Calorimeter Scintillator Upgrade, and Missing Transverse Momentum Resolution due to Pileup Zishuo.
Development of a Multi-Channel Integrated Circuit for Use in Nuclear Physics Experiments Where Particle Identification is Important Michael Hall Southern.
DLS Digital Controller Tony Dobbing Head of Power Supplies Group.
MiniBoone Detector: Digitization at Feed Through Student: John Odeghe ; SC State, Fermi Lab Intern Supervisor: JinYuan Wu; Fermi Lab 1.
Data acquisition system for the Baikal-GVD neutrino telescope Denis Kuleshov Valday, February 3, 2015.
Using co-design techniques to increase the reliability of the Electronic control System for a Multilevel Power Converter Javier C. Brook, Francisco J.
Development of a Multi-Channel Integrated Circuit for Use in Nuclear Physics Experiments Where Particle Identification is Important Michael Hall Southern.
S. De Santis “Measurement of the Beam Longitudinal Profile in a Storage Ring by Non-Linear Laser Mixing” - BIW 2004 May, 5th Measurement of the Beam Longitudinal.
The microIOC Family Gasper Pajor EPICS Collaboration Meeting Argonne National Laboratory June 2006.
Digital analysis of scintillator pulses generated by high-energy neutrons. Jan Novák, Mitja Majerle, Pavel Bém, Z. Matěj 1, František Cvachovec 2, 1 Faculty.
W.Skulski APS April/2003 Eight-Channel Digital Pulse Processor And Universal Trigger Module. Wojtek Skulski, Frank Wolfs University of Rochester.
Neutron detector developments at LPC Caen  -delayed neutron detectors  current limitations  future issues Search for new solid scintillators (Neutromania)
Neutron detection in LHe ( HMI run 2004) R.Golub, E. Korobkina, J. Zou M. Hayden, G. Archibold J. Boissevain, W.S.Wilburn C. Gould.
March 9, 2005 HBD CDR Review 1 HBD Electronics Preamp/cable driver on the detector. –Specification –Schematics –Test result Rest of the electronics chain.
01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
Team 2 Yimin Xiao Jintao Zhang Bo Yuan Yang.  An ability to sample analog voltage signal range from -12 V to 12 V via BNC;  An ability to reconstruct.
High Speed Digital Systems Lab Spring/Winter 2010 Project definition Instructor: Rolf Hilgendorf Students: Elad Mor, Ilya Zavolsky Integration of an A/D.
Ciemat Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Daniel Cano-Ott, DAQ meeting in Huelva, July 18 th and 19 th A new flash.
1 Lab. 12 Signal transmission with two boards  The system: –Use DSP to conduct processing in this lab. DigitalAnalog a(n)a(n) DigitalAnalog DAC ADC PC.
1 MGPA Linearity Mark Raymond (Dec.2004) Non-linearity measurements in the lab hardware description method results.
RT 2009, 15 th May 2009 Pulse Pile-up Recovery Using Model-Based Signal Processing. Paul. A.B. Scoullar, Southern Innovation, Australia. Prof. Rob J. Evans.
ESS Detector Group Seminar Edoardo Rossi 14th August 2015
Digitization at Feed Through R&D (2) Digitizer Performance Evaluation Student: John Odeghe ; SC State, Fermi Lab Intern Supervisor: JinYuan Wu; Fermi Lab.
29/05/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
 13 Readout Electronics A First Look 28-Jan-2004.
MADEIRA Valencia report V. Stankova, C. Lacasta, V. Linhart Ljubljana meeting February 2009.
Digital Acquisition: State of the Art and future prospects
"North American" Electronics
DAQ ACQUISITION FOR THE dE/dX DETECTOR
Status of the ECL DAQ subsystems
Fast neutron flux measurement in CJPL
Jinfan Chang Experimental Physics Center , IHEP Feb 18 , 2011
A General Purpose Charge Readout Chip for TPC Applications
Christophe Beigbeder PID meeting
Development of a Pulse Shape Discrimination IC
A Digital Pulse Processing System Dedicated to CdZnTe Detectors
Alternative FEE electronics for FIT.
GERDA Collaboration Meeting,
Li HAN, Sam Huh, and Neal H. Clinthorne
Sr-84 0n EC/b+ decay search with SrCl2 crystal
A First Look J. Pilcher 12-Mar-2004
K. Sedlak, A. Stoykov, R. Scheuermann
Theory of Operation PARADOX Technology DIGITAL Pet Proof Operation
Alberto A. Colavita, INFN, TS
The Histogram-Difference Method (HDM): A simple, topographical method for discriminating neutron/gamma pulses Robert M. French (LEAD-CNRS UMR 5022)
Presented at 2016 IEEE Nuclear Science Symposium - N28-32
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
Southern Illinois University Edwardsville
PID meeting Mechanical implementation Electronics architecture
Presented by Mohsen Shakiba
I  Linear and Logical Pulse II  Instruments Standard Ch 17 GK I  Linear and Logical Pulse II  Instruments Standard III  Application.
Readout Systems Update
Presentation transcript:

S. Normand,1 V. Kondrasovs, 1 G. Corre, 1 J.-M. Bourbotte, 1 A. Ferragut 2 1 Laboratoire Capteurs et Architectures Electroniques 2 Saphymo september 2011, Helsinki, Finland Speaker: K. Boudergui Neutron-gamma Discrimination in Standard Plastic Scintillators : application for passive neutron measurements

2 Overview  Neutron-gamma discrimination goals  Is using a hardware a solution ?  How to manage discrimination by signal processing ?  Experimental results K. BOUDERGUI etal., - 28th september 2011

3 Plastic scintillators properties  A low cost detector  Neutron-gamma discrimination is complex (especially in solid detectors) Working on signal processing improvements rather than on intrinsic material properties Liquid Organic scintillator Boron loaded plastic scintillator plastic scintillator simpleHard low high COST He3 DISCRIMINATION ABILITIES Neutron gamma discrimination goals K. BOUDERGUI etal., - 28th september 2011

4  Plastic Scintillators constraints  Fine pulse shaping with a high data rate analog to digital conversion (800 MHz, 8bit ADCs). Signal width about 20 ns with a rise time around 2 ns.  Hardware and Software partition for best data processing  Ad-hoc neutron-gamma discrimination algorithm Neutron gamma discrimination goals K. BOUDERGUI etal., - 28th september 2011

5 Scintillator PA RT<=1ns G=10-50 ADC 200 MHz 8 bit ADC 200 MHz 8 bit ADC 200 MHz 8 bit ADC 200 MHz 8 bit Delay ns HT µC HV management Setting and monitoring Data and control transfers -HT FPGA PC End User Interface Data (4 Bytes, 200 MHz) Is using a hardware a solution ? K. BOUDERGUI etal., - 28th september 2011

6 4 ADCs 200 MHz, 8 bits 100 MHz PIC32 µc SPARTAN III FPGA demonstration- board Delay line Is using a hardware a solution ? CEA digitizing board K. BOUDERGUI etal., - 28th september 2011

7 How to manage discrimination by signal processing ?  Neutron-gamma discrimination patented algorithm  Signal splitted into two parts: One is delayed, the other, emphasized One without any change  Both signals are merged and then generate two quantities plotted in a bi- dimensional spectrum  Two regions appears, one for , one for  and some crosstalk K. BOUDERGUI etal., - 28th september 2011

8 Neutron Gamma Let’s have a better look on the signal ! Gamma After a pre-processing, two quantities are generated : sigma 1 and sigma 2 as described before (Positive and negative fraction) How to manage discrimination by signal processing ? Neutron (Only positive fraction) K. BOUDERGUI etal., - 28th september 2011

9 Source Total count rate Neutron count rate Am c/s130 c/s Cs c/s120 c/s Cf c/s320 c/s Co c/s128 c/s Background2200 c/s120 c/s Cf-252 Neutron and gamma Co-60 Gamma only Experimental results K. BOUDERGUI etal., - 28th september 2011

10 Experimental results K. BOUDERGUI etal., - 28th september 2011

11  No raising in the count rate is observed when we are set in a “neutron counting mode” and a gamma source is added ( 241 Am, 137 Cs, 60 Co)  The efficiency on neutron sensitivity is around 25% “estimated by the Monte Carlo MCNP simulation ( 252 Cf),”  A false alarm rate less than 0.01%  The detection probability is 97.5% for a 12,000 n/s neutron source at 1 meter (AIEA+ANSI) Experimental results K. BOUDERGUI etal., - 28th september 2011

12  Flexible and configurable hardware architecture allows to use it for a wide range of applications  Good performances obtained for homeland security applications with Plastic Scintillators  NR-module integration in an operating MA-NRBC system  Performance improvements will provide an He-3 alternative Summary K. BOUDERGUI etal., - 28th september 2011

Thank you for your attention K. BOUDERGUI etal., - 28th september 2011