Scalar Dark Matter and the Higgs Portal M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear,

Slides:



Advertisements
Similar presentations
Kiwoon Choi PQ-invariant multi-singlet NMSSM
Advertisements

SUSY and other BSM physics with CMS
26th Rencontres de Blois, Particle Physics and Cosmology, 2014 BSM Higgs Searches at the LHC C. H. Shepherd-Themistocleous PPD, Rutherford Appleton Laboratory.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Common Benchmarks for FCC Physics John Ellis King’s College London & FCC-ee/TLEP7 Workshop.
Baryogenesis and Higgs Phenomenology V. CiriglianoLANL C. LeeLBL S. TulinCaltech S. ProfumoUC Santa Cruz G. ShaugnessyWisconsin PRD 71: (2005) PRD.
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
THE SEARCH FOR THE HIGGS BOSON Aungshuman Zaman Department of Physics and Astronomy Stony Brook University October 11, 2010.
Beyond MSSM Baryogenesis Kfir Blum and Yosef Nir, Phys.Rev.D78:035005,2008.
Electroweak Phase Transition, Scalar Dark Matter, & the LHC M.J. Ramsey-Musolf Wisconsin-Madison NPAC.
Little Higgs Model Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) KIAS-NCTS Joint Workshop High-1 2/9 – 2/15 In collaboration.
Little Higgs Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) XS 2014, 5/6/2014 In collaboration with H-C Tsai, M-C Lee, [hep-ph]
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine American Linear Collider Physics Group Seminar 20 February 2003.
.. Particle Physics at a Crossroads Meenakshi Narain Brown University.
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
Kaluza-Klein gluon production at the LHC
Nuclear Physics and the New Standard Model M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear,
Minimal Electroweak Scale Cosmology and the LHC M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical.
Relating dark matter and radiative Seesaw neutrino mass scales without beyond SM gauge symmetry Xiao-Gang He 1. Introduction 2. Radiative seesaw and dark.
Powerpoint Templates Page 1 Powerpoint Templates Looking for a non standard supersymmetric Higgs Guillaume Drieu La Rochelle, LAPTH.
Physics Session Summary Nobuchika Okada Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK) TILC09, Tsukuba,
Relic Neutrinos as a Source of Dark Energy Neal Weiner New York University IDM04 R.Fardon, D.B.Kaplan, A.E.Nelson, NW What does dark energy have to do.
Tension Between A Fourth Generation And The LHC Higgs Searches Xiao-Gang He (SJTU&NTU) Xiao-Gang He and German Valencia, arXiv: Xiao-Gang He and.
August 22, 2002UCI Quarknet The Higgs Particle Sarah D. Johnson University of La Verne August 22, 2002.
2. Two Higgs Doublets Model
Low scale gravity mediation in warped extra dimensions and collider phenomenology on sector hidden sector LCWS 06, March 10, Bangalore Nobuchika.
Takehiro Nabeshima University of Toyama ILC physics general meeting 9 jun Phenomenology at a linear collider in a radiative seesaw model from TeV.
H125 & Natural Alignment in the Z3 NMSSM Nausheen R. Shah University of Michigan Aug 7, 2015 In Collaboration with: M. Carena, H. Haber, I. Low & C. Wagner.
Test Z’ Model in Annihilation Type Radiative B Decays Ying Li Yonsei University, Korea Yantai University, China Based on J. Hua, C.S Kim, Y. Li, arxiv:
Supersymmetric Models with 125 GeV Higgs Masahiro Yamaguchi (Tohoku University) 17 th Lomonosov Conference on Elementary Particle Physics Moscow State.
Higgs Properties Measurement based on HZZ*4l with ATLAS
1 Summary talk for ILC Physics Yasuhiro Okada (KEK) November 12, 2004 ACFA LC7, Taipei.
Dark matter in split extended supersymmetry in collaboration with M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) Alessio Provenza (SISSA/ISAS) Newport Beach.
NMSSM & B-meson Dileptonic Decays Jin Min Yang ITP, Beijing arXiv: Heng, Wang, Oakes, Xiong, JMY 杨 金 民杨 金 民.
ILC Physics a theorist’s perspective Koji TSUMURA (Kyoto from Dec 1 st ) Toku-sui annual workshop 2013 KEK, Dec , 2013.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Low scale supergravity mediation in brane world scenario and hidden sector phenomenology Phys.Rev.D74:055005,2006 ( arXiv: hep-ph/ ) ACFA07 in Beijing:
Electric Dipole Moments, the LHC, and the Origin of Matter M.J. Ramsey-Musolf Wisconsin-Madison NPAC.
1 ILC の物理 岡田安弘 (KEK) ILC 測定器学術創成会議 2006年6月28日 KEK.
Yoshitaro Takaesu U. of Tokyo LHC limits on the Higgs-portal WIMPs arXiv: in collaboration with M. Endo (U.Tokyo)
Higgs PhysicsShaouly Bar-Shalom1 arXiv/ [PRD 2015] SBS (Technion), A. Soni (BNL) & J. Wudka (UCR) Shaouly Bar-Shalom Technion, Israel
Electroweak Symmetry Breaking without Higgs Bosons in ATLAS Ryuichi Takashima Kyoto University of Education For the ATLAS Collaboration.
1 Prospect after discoveries of Higgs/SUSY Yasuhiro Okada (KEK) “Discoveries of Higgs and Supersymmetry to Pioneer Particle Physics in the 21 st Century”
Low scale gravity black holes at LHC Enikő Regős ( CERN )
1 Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK.
The Higgs Boson Beate Heinemann, University of Liverpool  The Standard Model and Beyond  Tevatron and LHC  Tevatron Results on Higgs Searches  Future.
The Standard Model of the elementary particles and their interactions
Charged Higgs boson at the LHC 이강영 ( 건국대학교 연세대학교
03/31/2006S. M. Lietti - UED Search at SPRACE 1 Universal Extra Dimensions Search at SPRACE S. M. Lietti DOSAR Workshop at U.T. Arlington.
J. KalinowskiDark matter in U(1) extended SUSY1 Dark matter in the U(1) extended supersymmetric model Jan Kalinowski S.Y. Choi, H.E. Haber and P.M. Zerwas,
Marc M. Baarmand – Florida Tech 1 TOP QUARK STUDIES FROM CMS AT LHC Marc M. Baarmand Florida Institute of Technology PHYSICS AT LHC Prague, Czech Republic,
SUSY Baryogenesis, EDMs, & Dark Matter: A Systematic Approach M.J. Ramsey-Musolf V. CiriglianoCaltech C. LeeINT S. TulinCaltech S. ProfumoCaltech PRD 71:
Hong-Jian He Tsinghua University Physics Case for Circular Colliders Physics Case for Circular Colliders International WS on FHECC, IHEP, Beijing, Dec.16-17,
Hong-Jian He Tsinghua University 9th ACFA ILC Workshop Physics Session Summary Feb. 4-7, 2007, IHEP, Beijing.
We have the Higgs!!! Now What?? Nausheen R. Shah Wayne State University Oct 14, 2015 In Collaboration with: M. Carena, H. Haber, I. Low & C. Wagner arXiv:1510.xxxxx.
Issues in hidden sector dark matter Seungwon Baek (KIAS) Summer Institute 2013 Jirisan National Park, Aug , 2013 based on JHEP1202; JHEP1211; JHEP1305.
New Strong LHC Rogerio Rosenfeld Instituto de Física Teórica UNESP  
Lecture V: Electric Dipole Moments and the Baryon Asymmetry
Generating Neutrino Mass & Electroweak Scale Radiatively
Topics in Higgs Portal Dark Matter
Physics Overview Yasuhiro Okada (KEK)
Working group report -- cosmology
Cosmology study at CEPC/SppC on behalf of the TeV cosmology working group Bi Xiao-Jun (IHEP)
Some Implications Of The Recent LHC Higgs Search Results Xiao-Gang He (SJTU&NTU) Xiao-Gang He and German Valencia, arXiv: Xiao-Gang He and.
非最小超对称唯象研究: 工作汇报 杨 金 民 中科院 理论物理所 南开大学.
Physics Overview Yasuhiro Okada (KEK)
Physics Overview Yasuhiro Okada (KEK)
Dark Matter Explanation in Singlet Extension of MSSM
Can new Higgs boson be Dark Matter Candidate in the Economical Model
Prospect after discoveries of Higgs/SUSY
Presentation transcript:

Scalar Dark Matter and the Higgs Portal M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology SSNuDM, Shanghai, September 2012

Outline 1.Dark Matter Portals 2.Why the Higgs portal? 3.Why scalar dark matter ? 4.Simplest examples: scalar DM & LHC 5.Long-range dark forces Supersymmetry as an illustration Theoretical progress & challenges Our work

I. Dark Matter Portals Standard ModelHidden Sector (DM)

BSM Physics: EFT Framework EFT: Integrate out heavy DOF & retain only light DOF w/ M <<  Thanks: Adam Ritz

Portals Thanks: Adam Ritz

Classifying Portals “dark photons” Thanks: Adam Ritz

Classifying Portals  ! scalar DM  ! fermionic DM Mediator mass Thanks: Adam Ritz

Classifying Portals Thanks: Adam Ritz

II. Why the Higgs Portal ?

Higgs Boson Searches

SM Higgs?

SM “background” well below new CPV expectations New expts: 10 2 to 10 3 more sensitive CPV needed for BAU? LEP, Tevatron, & ATLAS Exclusion Non-SM Higgs(es) ? LHC Observation Precision Tests LHC Exclusion SM Higgs properties ?

Scalar Fields in Particle Physics Scalar fields are a simple Has a fundamental scalar finally been discovered ? Scalar fields are theoretically problematic  m 2 ~  2 If so, is it telling us anything about  ?

What is the BSM Energy Scale  ? Remarkable agreement with EWPO EWPO: data favor a “light” SM-like Higgs scalar Tension: EWPO + Direct Searches

What is the BSM Energy Scale  ? Remarkable agreement with EWPO Agreement w/ SM at ~ level: O NP = c /  2  ~ 10 TeV generically Barbieri & Strumia ‘99

Scalar Fields in Particle Physics Scalar fields are a simple Must  BSM ~ TeV to maintain a weak scale scalar ? Scalar fields are theoretically problematic  m 2 ~  2 EWPO: for new interactions coupling to gauge bosons or fermions,  BSM >> TeV

Scalar Fields in Particle Physics Scalar fields are a simple Must  BSM ~ TeV to maintain a weak scale scalar ? Scalar fields are theoretically problematic  m 2 ~  2

Scalar Fields in Particle Physics Scalar fields are a simple Must  BSM ~ TeV to maintain a weak scale scalar ? Scalar fields are theoretically problematic  m 2 ~  2 Perhaps new weak scale physics couples only to scalar sector: “Higgs portal”

III. Why scalar dark matter ?  ??

Scalar Fields & Early Universe

Scalar Fields in Cosmology What role do scalar fields play (if any) in the physics of the early universe ?

Scalar Fields in Cosmology ProblemTheoryExp’t Inflation Dark Energy Dark Matter Phase transitions

Symmetries & Cosmic History Standard Model Universe EW Symmetry Breaking: Higgs ? New Forces ? QCD: n+p! nuclei QCD: q+g! n,p… Astro: stars, galaxies,..

Symmetries & Cosmic History Standard Model Universe EW Symmetry Breaking: Higgs ? New Forces ? Puzzles the Standard Model can’t solve 1.Origin of matter 2.Unification & gravity 3.Weak scale stability 4.Neutrinos SUSY ? GUTS ? Extra Dims ? WRWR WL*WL* WLWL ~ NRNR Terascale

Scalar Fields & Inflation Standard Model Universe EW Symmetry Breaking: Higgs ? New Scalars ? QCD: n+p! nuclei QCD: q+g! n,p… Astro: stars, galaxies,.. Flatness Isotropy Homogeneity Scalar Field: Inflaton “Slow roll” Reheat

Scalar Fields & Dark Energy ?  CDM Supernovae BAO > 0 Cosmological constant ? Scalar Field: Quintessence ?

Scalar Fields & the Origin of Matter ? Baryogenesis: When? CPV? SUSY? Neutrinos? Non-equilibrium dynamics or CPT violation?

Scalar Fields & the Origin of Matter ? Baryogenesis: When? CPV? SUSY? Neutrinos? Non-equilibrium dynamics or CPT violation? Electroweak Phase Transition ? New Scalars

Scalar Fields & the Origin of Matter ? ? Darkogenesis: When? SUSY? Neutrinos? Axions ? Y B related ? Baryogenesis: When? CPV? SUSY? Neutrinos? Non-equilibrium dynamics or CPT violation? Rotation curves Lensing Bullet clusters Electroweak Phase Transition ? New Scalars

Scalar Fields & the Origin of Matter ? ? Darkogenesis: When? SUSY? Neutrinos? Axions ? Y B related ? Baryogenesis: When? CPV? SUSY? Neutrinos? Non-equilibrium dynamics or CPT violation? Rotation curves Lensing Bullet clusters Electroweak Phase Transition ? New Scalars: CDM ?

Scalar Fields in Cosmology Inflation Dark Energy Dark Matter Phase transitions ProblemTheoryExp’t     ? ? ? ?

Scalar Fields in Cosmology Inflation Dark Energy Dark Matter Phase transitions ProblemTheoryExp’t     ? ? ? ? Could experimental discovery of a fundamental scalar point to early universe scalar field dynamics?

Scalar Fields in Cosmology Inflation Dark Energy Dark Matter Phase transitions ProblemTheoryExp’t     ? ? ? ? Focus of this talk, but perhaps part of larger role of scalar fields in early universe

Electroweak Phase Transition

EW Phase Transition: New Scalars 1st order2nd order Increasing m h New scalars

EW Phase Transition: New Scalars 1st order2nd order Increasing m h New scalars Baryogenesis Gravity Waves Scalar DM LHC Searches

EW Phase Transition: New Scalars 1st order2nd order Increasing m h New scalars Baryogenesis Gravity Waves Scalar DM LHC Searches “Strong” 1 st order EWPT

EW Phase Transition: New Scalars 1st order2nd order Increasing m h New scalars Baryogenesis Gravity Waves Scalar DM LHC Searches “Strong” 1 st order EWPT Bubble nucleation EWSB

EW Phase Transition: New Scalars 1st order2nd order Increasing m h New scalars Baryogenesis Gravity Waves Scalar DM LHC Searches “Strong” 1 st order EWPT Bubble nucleation EWSBY B : CPV & EW sphalerons

EW Phase Transition: New Scalars 1st order2nd order Increasing m h New scalars Baryogenesis Gravity Waves Scalar DM LHC Searches “Strong” 1 st order EWPT Bubble nucleation EWSBY B : diffuses into interiors

EW Phase Transition: New Scalars 1st order2nd order Increasing m h New scalars Baryogenesis Gravity Waves Scalar DM LHC Searches “Strong” 1 st order EWPT Bubble nucleation EWSBY B : diffuses into interiors Preserve Y B initial Quench EW sph T C, E sph, S tunnel F(  )

EW Phase Transition: New Scalars 1st order2nd order Increasing m h New scalars Baryogenesis Gravity Waves Scalar DM LHC Searches “Strong” 1 st order EWPT Bubble nucleation EWSB GW Spectra:  Q &  t EW F(  ) Detonation & turbulence nMSSM QQ  t EW

EW Phase Transition: New Scalars 1st order2nd order Increasing m h New scalars Baryogenesis Gravity Waves Scalar DM LHC Searches “Strong” 1 st order EWPT Bubble nucleation EWSB GW Spectra:  Q &  t EW F(  ) Detonation & turbulence

EW Phase Transition: New Scalars 1st order2nd order Increasing m h New scalars Baryogenesis Gravity Waves Scalar DM LHC Searches “Strong” 1 st order EWPT Bubble nucleation EWSB Detonation & turbulence

EW Phase Transition: New Scalars 1st order2nd order Increasing m h New scalars Baryogenesis Gravity Waves Scalar DM ? LHC Searches ? “Strong” 1 st order EWPT Bubble nucleation EWSB T C, E sph, S tunnel  Q &  t EW F(  ) Y B preservation, detonation & turbulence

Dark Matter:   &  SI Thermal DM: WIMP   SM Direct detection: Spin-indep DM-nucleus scattering   A A ?

IV. Simple examples

Higgs Portal: Simple Scalar Extensions ExtensionEWPTDMDOF May be low-energy remnants of UV complete theory & illustrative of generic features Real singlet Complex Singlet Real Triplet    ?    

The Simplest Extension Model Independent Parameters: v 0, x 0, 0, a 1, a 2, b 3, b 4 H-S Mixing H 1 ! H 2 H 2 Mass matrix Stable S (dark matter?) Tree-level Z 2 symmetry: a 1 =b 3 =0 to prevent s-h mixing and one-loop s hh x 0 =0 to prevent h-s mixing xSM EWPT:  Signal Reduction Factor ProductionDecay Simplest extension of the SM scalar sector: add one real scalar S (SM singlet) EWPT: a 1,2 = 0 & = 0 DM: a 1 = 0 & = 0 // O’Connel, R-M, Wise; Profumo, R-M, Shaugnessy; Barger, Langacker, McCaskey, R-M Shaugnessy; He, Li, Li, Tandean, Tsai; Petraki & Kusenko; Gonderinger, Li, Patel, R-M; Cline, Laporte, Yamashita; Ham, Jeong, Oh; Espinosa, Quiros; Konstandin & Ashoorioon…

The Simplest Extension, Cont’d Mass matrix Stable S (dark matter?) Tree-level Z 2 symmetry: a 1 =0 to prevent s-h mixing and one-loop s hh x 0 =0 to prevent h-s mixing & s ! hh x 0 = h 1,2 S h h

The Simplest Extension Model H-S Mixing H 1 ! H 2 H 2 Mass matrix Stable S (dark matter?) Tree-level Z 2 symmetry: a 1 =b 3 =0 to prevent s-h mixing and one-loop s hh x 0 =0 to prevent h-s mixing xSM EWPT:  Signal Reduction Factor ProductionDecay DM Scenario

HW Question 1 Consider the real singlet extension: explain why the presence of an operator S 3 in addition to H + H S 2 would imply that S can decay to Standard Model particles

The Simplest Extension Model Independent Parameters: v 0, x 0, 0, a 1, a 2, b 3, b 4 H-S Mixing H 1 ! H 2 H 2 Mass matrix Stable S (dark matter?) Tree-level Z 2 symmetry: a 1 =b 3 =0 to prevent s-h mixing and one-loop s hh x 0 =0 to prevent h-s mixing xSM EWPT:  Signal Reduction Factor ProductionDecay DM Scenario  DM &  SI ++…

DM Phenomenology Relic Density He, Li, Li, Tandean, Tsai Direct Detection He, Li, Li, Tandean, Tsai Barger, Langacker, McCaskey, R-M, Shaugnessy H S S f f - Higgs pole

LHC & Higgs Phenomenology LHC discovery potential Signal Reduction Factor ProductionDecay V 1j < 1: mixed states h j New decays: h 2 ! h 1 h 1 Dark matter: no mixing ! states are h,S New decays h! SS (invisible!) possible

LHC & Higgs Phenomenology Invisible decays He, Li, Li, Tandean, Tsai Look for azimuthal shape change of primary jets (Eboli & Zeppenfeld ‘00) Dijet azimuthal distribution  (h!SS)=0 Invis search LHC discovery potential Signal Reduction Factor ProductionDecay

LHC & Higgs Phenomenology Invisible decays He, Li, Li, Tandean, Tsai Look for azimuthal shape change of primary jets (Eboli & Zeppenfeld ‘00) Dijet azimuthal distribution LHC discovery potential Signal Reduction Factor ProductionDecay Jets + E T

VBF: Invisible Search I H ! W + W - !  jj : ideally only W decay products in central region (Chehime & Zeppenfeld ‘93)  H ! W + W - ! l + l -  : central region minijet from SM bcknd,  separation from dilepton pair (Barger, Phillips, Zeppenfeld ‘94) Central Jet Veto “Lego plot” 

VBF: Invisible Search II  Look for azimuthal shape change of primary jets (Eboli & Zeppenfeld ‘00) Dijet azimuthal distribution  p T (H) distribution Large p T (invisible decay) Cahn et al ‘87 VBF + Invis decay SM bcknd

LHC & Higgs Phenomenology Invisible decays He, Li, Li, Tandean, Tsai Look for azimuthal shape change of primary jets (Eboli & Zeppenfeld ‘00) Dijet azimuthal distribution LHC discovery potential Signal Reduction Factor ProductionDecay ATLAS

LHC & Higgs Phenomenology Giardino et al: arXiv 1207:1347

Higgs Portal: Simple Scalar Extensions ExtensionEWPTDMDOF May be low-energy remnants of UV complete theory & illustrative of generic features Real singlet Complex Singlet Real Triplet    ?    

Complex Singlet: EWB & DM? Barger, Langacker, McCaskey, R-M Shaugnessy Spontaneously & softly broken global U(1) Controls  CDM, T C, & H-S mixing Gives non-zero M A = 0

Complex Singlet: EWB & DM? Barger, Langacker, McCaskey, R-M Shaugnessy Consequences: Three scalars: h 1, h 2 : mixtures of h & S A : dark matter Phenomenology: Produce h 1, h 2 w/ reduced   Reduce BR (h j ! SM) Observation of BR (invis) Possible obs of  SI

Complex Singlet: EWB & DM Barger, Langacker, McCaskey, R-M, Shaugnessy  2 controls  CDM & EWPT M H1 = 120 GeV, M H2 =250 GeV, x 0 =100 GeV decreasing T C

Complex Singlet: Direct Detection Barger, Langacker, McCaskey, R-M, Shaugnessy Two component case (x 0 =0) Little sensitivity of scaled  SI to  

HW Question 2 Explain why the scaled direct detection cross section is insensitive to the value of the coupling  2

Complex Singlet: LHC Discovery Barger, Langacker, McCaskey, R-M, Shaugnessy Traditional search: CMSInvisible search: ATLAS Single component case (x 0 = 0) EWPT

SM Higgs? Three scalars: h 1,2 (Higgs-like) D (dark matter) LHC: WBF “Invisible decay” search D D D D SM Branching Ratios ? He et al Barger, Langacker, McCaskey, RM, Shaugnessy EWPT WIMP-Nucleus Scattering Viable Dark Matter ? Gonderinger, Lim, R-M 2 nd light state  TH <  WMAP  Xenon Br(inv) > 0.6

Higgs Portal: Simple Scalar Extensions ExtensionEWPTDMDOF May be low-energy remnants of UV complete theory & illustrative of generic features Real singlet Complex Singlet Real Triplet    ?    

      ~ ( 1, 3, 0 ) Fileviez-Perez, Patel, Wang, R-M: PRD 79: (2009); [hep-ph] EWPT: a 1,2 = 0 & = 0 DM & EWPT: a 1 = 0 & = 0 //

Real Triplet       ~ ( 1, 3, 0 ) Fileviez-Perez, Patel, Wang, R-M: [hep-ph] EWPT: a 1,2 = 0 & = 0 DM & EWPT: a 1 = 0 & = 0 // Small:  -param

Real Triplet       ~ ( 1, 3, 0 ) Fileviez-Perez, Patel, Wang, R-M: [hep-ph] EWPT: a 1,2 = 0 & = 0 DM & EWPT: a 1 = 0 & = 0 // Small:  -param

HW Question 3 Consider the real triplet extension in which there is no H 0 -   mixing: explain why    cannot decay to Standard Model fermions, unlike the H 0

Real Triplet       ~ ( 1, 3, 0 ) Fileviez-Perez, Patel, Wang, R-M: [hep-ph] New feature: gauge interactions & direct detection Y = 2 ( Q - I 3 ) g  Z / 2 I Q sin 2  W Want Y = 0

Real Triplet       ~ ( 1, 3, 0 ) Fileviez-Perez, Patel, Wang, R-M: [hep-ph] New feature: gauge interactions & LHC production q q     W + q q     Z 0 EW cross sections w/ charged states + E T

LHC Phenomenology SM Branching Ratios ? Four scalars: h 1 (Higgs-like)   (dark matter)     (new states) SM “background” well below new CPV expectations New expts: 10 2 to 10 3 more sensitive CPV needed for BAU? D D D D Fileviez-Perez, Patel, R-M, Wang LEP: M  > 100 GeV ! BR(invis) = 0

Real Triplet : Charged BRs Charged: x 0 dependence Below WZ Threshold Above WZ Threshold Pure gauge x 0 supressed

Real Triplet : DM Search Basic signature: Charged track disappearing after ~ 5 cm SM Background: QCD jZ and jW w/ Z !  & W!l Trigger: Monojet (ISR) + large E T Cuts: large E T hard jet One 5cm track Cirelli et al: M  = 500 GeV:    CDM ~ 0.1

SM Higgs? SM “background” well below new CPV expectations New expts: 10 2 to 10 3 more sensitive CPV needed for BAU? SM Branching Ratios ? Four scalars: h 1 (Higgs-like)   (dark matter)     (new states) D D D D Fileviez-Perez, Patel, R-M, Wang   

Real Triplet : H 1 Decays Neutral SM-like Higgs: H + loops and BR ( H 1 !  ) X 0 =0: DM caseX 0 >0: EWPT case

SM Higgs? SM “background” well below new CPV expectations New expts: 10 2 to 10 3 more sensitive CPV needed for BAU? LHC: H !  D D D D   

Is it a Scalar ? Real singlet Complex Singlet Real Triplet ExtensionEWPTDM    ?     DOF

Is it a Scalar ? Real singlet Complex Singlet Real Triplet ExtensionEWPTDM    ?     DOF Mixed Higgs-like states and/or modified BRs: signal reduction  invisible search…

Is it a Scalar ? Real singlet Complex Singlet Real Triplet ExtensionEWPTDM    ?     DOF Could be fermionic triplet [e.g., Buckley, Randall, Shuve, JHEP 1105 (2011) 97]. How to distinguish?

Di-Jet Correlations J1J1 J2J2 V V p1p1 p2p2 Buckley, R-M JHEP 1109 (2011) 094 R-hadrons from gg fusion Scalars Fermions

New Scalars &  BSM Preserving EW Min“Funnel plot” V EFF  perturbativity m H top loops naïve stability scale  EW vacuum Gonderinger, Li, Patel, R-M SM stability & pert’vity SM unstable above ~ 8 TeV top loops sets m H

New Scalars &  BSM Preserving EW Min“Funnel plot” V EFF  perturbativity m H top loops naïve stability scale  EW vacuum top loops Gonderinger, Li, Patel, R-M SM stability & pert’vity SM + singlet: stable but non-pertur’tive DM-H coupling

Dark Matter Stability Preserving EW Min“Funnel plot” Gonderinger, Li, Patel, R-M V EFF  perturbativity m H ?  s Z 2 -breaking vacuum Z 2 -preserving EW vacuum No DM: Z 2 -breaking vac top loops naïve stability scale  EW vacuum m S 2 = b 2 + a 2 v 2

V. Long Range Dark Forces

Torsion Balances & Dark Forces New interactions in the dark sector ? Long-range, non-grav dark force Violation of weak equiv principle (WEP) Galactic tidal streams & CMB New hierarchy problem Non-sterile DM & terrestrial WEP tests Carroll, Mantry, RM, Stubbs Bovy & Farrar Kesden & Kamionkowski Eot-Wash Microscope

Summary There exist a number of interesting and viable “portals” for probing the dark sector The Higgs portal is particularly interesting now in light of the LHC discovery, and it raises many new questions Discovering scalar dark matter via the Higgs portal could make the idea of scalar fields in the early universe more plausible Simple scalar sector extensions that embody features of UV complete theories illustrate key features of the theory and phenomenology of scalar dark matter ! A rich and exciting period of experiment and theory lies ahead

Back Up Slides

Real Triplet : DM Search Basic signature: Charged track disappearing after ~ 5 cm SM Background: QCD jZ and jW w/ Z !  & W!l Trigger: Monojet (ISR) + large E T Cuts: large E T hard jet One 5cm track

Real Triplet : DM Search Basic signature: Charged track disappearing after ~ 5 cm SM Background: QCD jZ and jW w/ Z !  & W!l Trigger: Monojet (ISR) + large E T

LHC Phenomenology Signatures EWPO compatible m 2 > 2 m 1 m 1 > 2 m 2 LHC: reduced BR(h SM) Signal Reduction Factor ProductionDecay CMS 30 fb -1  SM-like Singlet-like SM-like SM-like w/ H 2 ->H 1 H 1 or Singlet-like ~ EWB Viable Light: all models Black: LEP allowed Scan: EWPT-viable model parameters LHC exotic final states: 4b-jets,  + 2 b-jets… EWPO comp w/ a 1 =0=b 3 LHC: reduced BR(h SM) Probing   : WBF H ! ZZ! 4 l H ! WW! 2j l Early LHC discovery possible Determine  as low as ~ 0.5

DM & Higgs Phenomenology Relic Density Direct Detection Vac stability He, Li, Li, Tandean, Tsai Gonderinger, Li, Patel, R-M He, Li, Li, Tandean, Tsai Barger, Langacker, McCaskey, R-M, Shaugnessy

LHC & Higgs Phenomenology Vac stab & perturbativityInvisible decays He, Li, Li, Tandean, Tsai Gonderinger, Li, Patel, R-M

LHC & Higgs Phenomenology Vac stab & pertubativityInvisible decays LHC discovery potential  (h!SS)=0 Invis search He, Li, Li, Tandean, Tsai Gonderinger, Li, Patel, R-M Barger, Langacker, McCaskey, R-M, Shaugnessy

Real Triplet : Charged BRs I Charged: x 0 dependence Pure gauge x 0 suppressed

Real Triplet : Heavy Neutral State Neutral: differences with SM Higgs & a 2 dependence Different ratio of WW and ZZ,  BRs

DM & Higgs Phenomenology Relic DensityVac stability He, Li, Li, Tandean, Tsai Gonderinger, Li, Patel, R-M