Super-Kamiokande Introduction Contained events and upward muons Updated results Oscillation analysis with a 3D flux Multi-ring events  0 /  ratio 3 decay.

Slides:



Advertisements
Similar presentations
Neutrinos from kaon decay in MiniBooNE Kendall Mahn Columbia University MiniBooNE beamline overview Kaon flux predictions Kaon measurements in MiniBooNE.
Advertisements

Oscillation formalism
Recent Results from Super-Kamiokande on Atmospheric Neutrino Measurements Choji Saji ICRR,Univ. of Tokyo for the Super-Kamiokande collaboration ICHEP 2004,
Soudan 2 Peter Litchfield University of Minnesota For the Soudan 2 collaboration Argonne-Minnesota-Oxford-RAL-Tufts-Western Washington  Analysis of all.
Atmospheric Neutrinos Barry Barish Bari, Bologna, Boston, Caltech, Drexel, Indiana, Frascati, Gran Sasso, L’Aquila, Lecce, Michigan, Napoli, Pisa, Roma.
11-September-2005 C2CR2005, Prague 1 Super-Kamiokande Atmospheric Neutrino Results Kimihiro Okumura ICRR Univ. of Tokyo ( 11-September-2005.
Takaaki Kajita ICRR, Univ. of Tokyo Nufact05, Frascati, June 2005.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Performance of a Water Cherenkov Detector for e Appearance Shoei NAKAYAMA (ICRR, University of Tokyo) November 18-19, 2005 International Workshop on a.
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
First Observations of Separated Atmospheric  and  Events in the MINOS Detector. A. S. T. Blake* (for the MINOS collaboration) *Cavendish Laboratory,
S K Atmospheric Neutrino Oscillations in SK-I An Updated Analysis Alec Habig, Univ. of Minnesota Duluth for the Super-Kamiokande Collaboration With much.
S K The Many Uses of Upward- going Muons in Super-K Muons traveling up into Super-K from high-energy  reactions in the rock below provide a high-energy.
1 CC analysis update New analysis of SK atm. data –Somewhat lower best-fit value of  m 2 –Implications for CC analysis – 5 year plan plots revisited Effect.
8/5/2002Ulrich Heintz - Quarknet neutrino puzzles Ulrich Heintz Boston University
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
New results from K2K Makoto Yoshida (IPNS, KEK) for the K2K collaboration NuFACT02, July 4, 2002 London, UK.
Super-Kamiokande – Neutrinos from MeV to TeV Mark Vagins University of California, Irvine EPS/HEP Lisbon July 22, 2005.
Atmospheric Neutrino Oscillations in Soudan 2
Shoei NAKAYAMA (ICRR) for Super-Kamiokande Collaboration December 9, RCCN International Workshop Effect of solar terms to  23 determination in.
1 Super-Kamiokande atmospheric neutrinos Results from SK-I atmospheric neutrino analysis including treatment of systematic errors Sensitivity study based.
M. Giorgini University of Bologna, Italy, and INFN Limits on Lorentz invariance violation in atmospheric neutrino oscillations using MACRO data From Colliders.
Solar neutrino measurement at Super Kamiokande ICHEP'04 ICRR K.Ishihara for SK collaboration Super Kamiokande detector Result from SK-I Status of SK-II.
Recent results from the K2K experiment Yoshinari Hayato (KEK/IPNS) for the K2K collaboration Introduction Summary of the results in 2001 Overview of the.
Present status of oscillation studies by atmospheric neutrino experiments ν μ → ν τ 2 flavor oscillations 3 flavor analysis Non-standard explanations Search.
Michael Smy UC Irvine Solar and Atmospheric Neutrinos 8 th International Workshop on Neutrino Factories, Superbeams & Betabeams Irvine, California, August.
Apr. 4, KEK JHF-SK neutrino workshop 1 e appearance search Yoshihisa OBAYASHI (KEK - IPNS)
K2K NC  0 production Shoei NAKAYAMA (ICRR, Univ. of Tokyo) for the K2K Collaboration July 28, NuFact04.
Final results on atmospheric  oscillations with MACRO at Gran Sasso Bari, Bologna, Boston, Caltech, Drexel, Frascati, Gran Sasso, Indiana, L’Aquila, Lecce,
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
TAUP Searches for nucleon decay and n-n oscillation in Super-Kamiokande Jun Kameda (ICRR, Univ. of Tokyo) for Super-Kamiokande collaboration Sep.
1 DISCOVERY OF ATMOSPHERIC MUON NEUTRINO OSCILLATIONS Prologue First Hint in Kamiokande Second Hint in Kamiokande Evidence found in Super-Kamiokande Nov-12.
1 MACRO constraints on violation of Lorentz invariance M. Cozzi Bologna University - INFN Neutrino Oscillation Workshop Conca Specchiulla (Otranto) September.
Latest Results from the MINOS Experiment Justin Evans, University College London for the MINOS Collaboration NOW th September 2008.
Atmospheric neutrinos
Solar neutrino results from Super-Kamiokande Satoru Yamada for the Super-Kamiokande collaboration Institute of cosmic ray research, University of Tokyo.
Yoshihisa OBAYASHI, Oct. Neutrino Oscillation Experiment between JHF – Super-Kamiokande Yoshihisa OBAYASHI (Kamioka Observatory, ICRR)
Search for Electron Neutrino Appearance in MINOS Mhair Orchanian California Institute of Technology On behalf of the MINOS Collaboration DPF 2011 Meeting.
Study of neutrino oscillations with ANTARES J. Brunner.
Study of neutrino oscillations with ANTARES J. Brunner.
J. Goodman – January 03 The Solution to the Solar Problem Jordan A. Goodman University of Maryland January 2003 Solar Neutrinos MSW Oscillations Super-K.
Takaaki Kajita, ICRR, Univ. of Tokyo NOW2004, Sep 2004.
Bartol Flux Calculation presented by Giles Barr, Oxford ICRR-Kashiwa December 2004.
Search for Sterile Neutrino Oscillations with MiniBooNE
Rencontres de Moriond (6 th March 2005) C. Mariani (INFN Rome) for K2K collaboration March 6 th, XLth Rencontres de Moriond.
Neutrino Oscillations at Super-Kamiokande Soo-Bong Kim (Seoul National University)
Takaaki Kajita (ICRR, U.of Tokyo) Production of atmospheric neutrinos Some early history (Discovery of atmospheric neutrinos, Atmospheric neutrino anomaly)
Takaaki Kajita (ICRR, U.of Tokyo) Production of atmospheric neutrinos Some early history (Discovery of atmospheric neutrinos, Atmospheric neutrino anomaly)
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
Accelerator-based Long-Baseline Neutrino Oscillation Experiments Kam-Biu Luk University of California, Berkeley and Lawrence Berkeley National Laboratory.
Recent Results from Super-K Kate Scholberg, Duke University June 7, 2005 Delphi, Greece.
CP phase and mass hierarchy Ken-ichi Senda Graduate University for Advanced Studies (SOKENDAI) &KEK This talk is based on K. Hagiwara, N. Okamura, KS PLB.
Recent Results from RENO NUFACT2014 August. 25 to 30, 2014, Glasgow, Scotland, U.K. Hyunkwan Seo on behalf of the RENO Collaboration Seoul National University.
Search for active neutrino disappearance using neutral-current interactions in the MINOS long-baseline experiment 2008/07/31 Tomonori Kusano Tohoku University.
Solar Neutrino Results from SNO
Search for exotic contributions to Atmospheric Neutrino Oscillations Search for exotic contributions to Atmospheric Neutrino Oscillations - Introduction.
Spring school “Bruno Touschek” (19 th May 2005) C. Mariani (INFN Rome) May 19 th, LNF Spring School “ Bruno Touschek ”
Supernova Relic Neutrinos (SRN) are a diffuse neutrino signal from all past supernovae that has never been detected. Motivation SRN measurement enables.
Jul. 24, 2010Yoshihisa OBAYASHI, Atmospheric Neutrino from SuperK2  Imaging Water Cherenkov detector  50kt Pure Water  32kt Inner Detector viewed by.
Takaaki Kajita ICRR, Univ. of Tokyo KIAS, Seoul, Nov Fig: Senda NP-4.
Review of experimental results on atmospheric neutrinos Introduction Super-Kamiokande MACRO Soudan 2 Summary Univ. of Tokyo, Kamioka Observatory.
Hiroyuki Sekiya ICHEP2012 Jul 5 The Hyper-Kamiokande Experiment -Neutrino Physics Potentials- ICHEP2012 July Hiroyuki Sekiya ICRR,
Neutrino Interaction measurement in K2K experiment (1kton water Cherenkov detector) Jun Kameda(ICRR) for K2K collaboration RCCN international workshop.
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
Constraint on  13 from the Super- Kamiokande atmospheric neutrino data Kimihiro Okumura (ICRR) for the Super-Kamiokande collaboration December 9, 2004.
The XXII International Conference on Neutrino Physics and Astrophysics in Santa Fe, New Mexico, June 13-19, 2006 The T2K 2KM Water Cherenkov Detector M.
L/E analysis of the atmospheric neutrino data from Super-Kamiokande
スーパーカミオカンデ1140日の 大気ニュートリノ観測
Ultra-high energy upward going muons in Super-Kamiokande II
L/E analysis of the atmospheric neutrino data from Super-Kamiokande
Presentation transcript:

Super-Kamiokande Introduction Contained events and upward muons Updated results Oscillation analysis with a 3D flux Multi-ring events  0 /  ratio 3 decay Search for  leptons   s Conclusion Y.Totsuka Kamioka

Super-Kamiokande collaboration

Super-Kamiokande detector 50,000 ton water Cherenkov detector (22.5 kton fiducial volume) 1000m underground (2700 m.w.e.) 11, inch PMTs for inner detector 1,885 8-inch PMTs for outer detector

Atmospheric neutrinos p, He...  , K   ee  e L=10-30 km L=up to km    e  e = ~ 2    e  low energy (E  high energy Neutrino oscillations :     e e dataMC 11 Error in absolute flux~20%, but  / e ratio~5%     e e

Atmospheric neutrino spectrum Energy dependence of   e ratio <5% accuracy       e   e        e   e (3-D) (P.Lipari)

Primary cosmic ray flux protons He From P.Lipari

Bartol and Honda fluxes

Zenith angle distribution(1D) For E  > a few GeV, Upward / downward = 1 (within a few %) Up/Down asymmetry for neutrino oscillations Calculated zenith angle distribution E =0.5GeVE =3GeVE =20GeV

p p 1D p p 3D 3D calculation by G.Battistoni et al. (hep-ph/ )  –0.2 GeV GeV GeV1-5 GeV horizontalvertical 3D neutrino flux calculation

Contained events Interaction in the rock Upward through- going muons contained through-going muons stopping muons Upward stopping muons Initial neutrino energy spectrum How to detect atmospheric neutrinos

Contained event analysis e or  Fully Contained (FC)Partially Contained (PC)  No hit in Outer DetectorOne cluster in Outer Detector Reduction Automatic ring fitter Particle ID Energy reconstruction Fiducial volume (>2m from wall, 22 ktons) E vis > 30 MeV (FC), > 3000 p.e. (~350 MeV) (PC) Final sample: FC: 8.2 ev./day, PC: 0.58 ev./day E vis < 1.33 GeV : Sub-GeV E vis > 1.33 GeV : Multi-GeV

Total Data MC(Honda flux) 1ring e-like  -like Multi ring Total Sub-GeV (Fully Contained) E vis 100 MeV, P   > 200 MeV Data MC(Honda flux) 1ring e-like  -like Multi ring Total  /e Data  /e MC =  Multi-GeV Fully Contained (E vis > 1.33 GeV) Partially Contained (assigned as  -like)  /e Data  /e MC =  ( d (79.3 kt.  y))  Fully contained event summary

Zenith angle distribution 1289 days (79.3 kt. yrs) No oscillation Best fit (  m 2 =2.4x10 -3 eV 2, sin 2 2  =1.00)  2 (best fit) = 132.4/137 d.o.f.  2 (no osc.) = 299.3/139 d.o.f.  2 =167 (E<1.33 GeV) (E>1.33 GeV)

Multi-ring event analysis 1289 days (79.3 kt. yrs) No oscillation Best fit (  m 2 =2.0x10 -3 eV 2, sin 2 2  =1.00) Sub-GeV muti-ring  -like sample Zenith angle distributions Multi-GeV muti-ring  -like sample 0.6 GeV < E < 1.33 GeV E > 1.33 GeV The zenith angle distortion is consistent with single-ring analysis. preliminary cos 

Upward through-going muons horizontalvertical No oscillation:  2 (shape)=18.7 / 10 d.o.f. (prob.=0.044) Osc. best fit (  m 2 =5.2x10 -3 eV 2,sin 2 2  =0.86) Upward stopping muons No oscillation: (Bartol, GRV94) Oscillation (  m 2 =3.2x10 -3 eV 2,sin 2 2  =1.00) stopping  through  ( ) Data stopping  through  ( ) MC = 0.  . .09 = << events / 1268 days 345 events / 1247 days Zenith angle distributions of upward-going muons

79.3 kt. yrs    Best fit :  m 2 =2.5x10 -3 eV 2, sin 2 2  =1.00 (  2 =142.1 / 152 d.o.f.) 68% C.L. 90% C.L. 99% C.L. SK combined result  m 2 = (1.7~4)x10 -3 eV 2 sin 2 2  > 0.89 (90% C.L.) Allowed region (FC + PC + UP-thru + UP-stop)

79.3 kt. yrs    Best fit :  m 2 =2.5x10 -3 eV 2, sin 2 2  =1.00 (  2 =142.1 / 152 d.o.f.) 68% C.L. 90% C.L. 99% C.L. SK combined result  m 2 = (1.7~4)x10 -3 eV 2 sin 2 2  > 0.89 (90% C.L.)  m 2 (eV 2 ) sin 2 2  unphysical region Allowed region - II (FC + PC + UP-thru + UP-stop)

No oscillation Best fit (  m 2 =2.5x10 -3 eV 2, sin 2 2  =1.00) Zenith angle distributions for the best fit

Allowed region (grand global fit) (FC + PC + UP-thru + UP-stop + multi-rings) 79.3 kt. yrs Within physical region; x 2 min = 157.5/170 dof at sin 2 2  = 1.0,  m 2 = 2.5  eV 2 With unphysical region; x 2 min = 157.4/170 dof at sin 2 2  = 1.01,  m 2 = 2.5  eV 2

Zenith angle distributions for the best fit (grand global fit) No oscillation Best fit (  m 2 =2.5x10 -3 eV 2, sin 2 2  =1.00)

Zenith angle distributions for the best fit (cont) (grand global fit) No oscillation Best fit (  m 2 =2.5x10 -3 eV 2, sin 2 2  =1.00)

Systematics in the 1D fit

  sterile (  0 method) (   /  ) Data (   /  ) MC > 1 for     1 for   s Data events (BG subt.) MC events (   /  ) Data (   /  ) MC = 1.49  0.08(stat.)  0.11(sys.) { Experimental only

 0 info from K2K-1kt  0 FC-  () data = 0.99  0.03  0.1 PRELIMINARY  0 FC-  () MC

(  0 /  ) data vs (  0 /  ) MC-no-osc PRELIMINARY

Using matter effect and enriched NC sample    : No matter effect   s : With matter effect Neutrino oscillation in matter:  () = ( cos  m s sin  m - sin  m cos  m ) 1 2 () sin 2 2  m sin 2 2  = (  cos2    sin 2 2   =  2 G F n n E /  m 2  For sin 2 2  =  1 sin 2 2  m 1 ~    + 1 And for E = 30~100 GeV    1 and sin 2 2  m   1 Suppression ! Strategy: Obtain allowed region using lower energy events (Fully contained sample) Then, Test zenith angle of NC enriched events, high energy PC and through-going muon events.   sterile (matter in earth)

Allowed region using only FC events

Zenith angle of upward-going muon  m 2 = 3 x10 -3 eV 2 sin 2 2  = 1  m 2 = 3 x10 -3 eV 2 sin 2 2  = 1   s    > p.e. (E> ~ 5 GeV) =~25 GeV   s Zenith angle of high energy PC events

  s    Criteria > 400 MeV visible energy Multi-ring event e-like ring is the most energetic ring Contents NC : 29 % e CC : 46 %  CC : 25 %  m 2 = 3 x10 -3 eV 2 sin 2 2  = 1 Zenith angle of NC enriched events

  s    sin 2 2  = 1   s      s    Up/Down ( cos  ) ratio of NC enriched multi-ring Up/Down (cos  ) ratio of High Energy PC Vertical/Horizontal ratio (cos  -0.4) of up muons Data eV eV 2 Ratios vs.  m 2 > < > 0.4 <-0.4 > 0.4

combine NC enriched, high E PC and up muons   s is excluded with 99 % C.L. excluded Allowed vs. excluded regions

Neutrino CC cross sections  CC Signature of  appearance:  + N   + N’ +  +   CC Expected  events  Higher multiplicity of Cherenkov rings  More  e decay signals  More spherical event pattern  e  hadrons(  Search for  appearance (3 methods) : (1) Energy flow and event shape analysis (2) Likelihood method using # of rings,  e, max p.e. ring and etc. (3) Neural network method Each method is optimized using only downward going events and then looks at upward going events. (I.e. blind method to disable systematic bias.) All cos  <-0.2 cos  >0.2 ~20ev./yr for 3x10 -3 eV 2 sin 2 2  = 1 E (GeV)  m 2 (eV 2 ) Search for  leptons

Multi-ring samples : atm  + e w/o  :  CC

All methods show ~2  excess of  -like events. The result is consistent with    oscillations. MC with  MC without  Likelihood method Observed # of  :  m 2 =3x10 -3 eV 2, sin 2 2  =1.00 (expected # of  : 74 events) Efficiency for  : 43.5 % # of  production: Energy flow method Efficiency for  : 32 % # of  production: Observed # of  : 25.5 cos  Neural network method Observed # of  : 42  # of  production: 92  Efficiency for  : 45 % Zenith-angle distribution

Test    oscillation with : P(    )=sin 2 2  sin 2 (  L  E n ) (  n : parameters) Use FC, PC, Up-through, and Up-stop data n=-1 is the standard neutrino oscillation index n 2 Magnified view n =  0.14 Probability of exotic oscillation models

Neutrino decay Let neutrinos oscillate and decay 3 X(invis); P(   ) = sin 4  + cos 4  exp ( ) + sin 2  exp ( ) cos ( ) Consider two cases; dcy>> osc, and dcy<< osc, where dcy =, osc = m 3 L  3 E m 3 L 2  3 E  m 2 L 2E  3 E m 3 4  E  m 2

dcy >> osc For  m 2 ,  2 min = 221.2/153 dof Bad fit !

dcy << osc For  m 2 0,  2 min = 147.1/153 dof at (sin 2 , m 3 /  3 ) = (0.68, 0.01 (GeV/km)) Good fit !

Up/down of NC enriched events (short dcy ) FC, Nring>1, Evis>400MeV, Brightest ring = e-like Allowed from FC+PC+Upmu Excluded from NC The case of dcy << osc is disfavored

Conclusions on atmospheric neutrinos Oscillation parameters for    :  m 2 = 1.7 ~ 4 x eV 2, sin 2 2  > 0.89 (90%CL) 3D flux does not change the conclusion but more precise 3D calculations are needed   s is strongly disfavored  0 /  ratio is consistent with    Excess from  leptons ~ 2  Decay senario is disfavored with > 2  for dcy >> osc and dcy << osc