Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.

Slides:



Advertisements
Similar presentations
Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
Advertisements

High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Subir Sachdev Quantum phase transitions of ultracold atoms Transparencies online at Quantum Phase Transitions Cambridge.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp Nicolas Laflorencie Moshe Schechter University.
Quantum phase transitions in anisotropic dipolar magnets In collaboration with: Philip Stamp, Nicolas laflorencie Moshe Schechter University of British.
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Correlated Electron Systems: Challenges and Future Gabriel Kotliar Rutgers University.
Fermi-Liquid description of spin-charge separation & application to cuprates T.K. Ng (HKUST) Also: Ching Kit Chan & Wai Tak Tse (HKUST)
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Calculation of dynamical properties using DMRG Karen A. Hallberg Centro Atómico Bariloche and Instituto Balseiro, Bariloche, Argentina Leiden, August 2004.
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Anomalous excitation spectra of frustrated quantum antiferromagnets John Fjaerestad University of Queensland Work done in collaboration with: Weihong Zheng,
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Hubbard model  U/t  Doping d or chemical potential  Frustration (t’/t)  T temperature Mott transition as.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
cond-mat/ , cond-mat/ , and to appear
Quick and Dirty Introduction to Mott Insulators
The spinning computer era Spintronics Hsiu-Hau Lin National Tsing-Hua Univ.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Conserving Schwinger boson approach for the fully- screened infinite U Anderson Model Eran Lebanon Rutgers University with Piers Coleman, Jerome Rech,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Equilibrium dynamics of entangled states near quantum critical points Talk online at Physical Review Letters 78, 843.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Dung-Hai Lee U.C. Berkeley Quantum state that never condenses Condense = develop some kind of order.
Glass Phenomenology from the connection to spin glasses: review and ideas Z.Nussinov Washington University.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Zheng-Yu Weng IAS, Tsinghua University
Electronic Griffiths phases and dissipative spin liquids
Oct. 26, 2005KIAS1 Competing insulating phases in one-dimensional extended Hubbard models Akira Furusaki (RIKEN) Collaborator: M. Tsuchiizu (Nagoya) M.T.
Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications.
Exact ground states of a frustrated 2D magnet: deconfined fractional excitations at a first order quantum phase transition Cristian D. Batista and Stuart.
A. S=1/2 fermions(Si:P, 2DEG) Metal-insulator transition Evolution of magnetism across transition. Phil. Trans. Roy. Soc. A 356, 173 (1998) (cond-mat/ )
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Subir Sachdev Superfluids and their vortices Talk online:
The Landscape of the Hubbard model HARVARD Talk online: sachdev.physics.harvard.edu Subir Sachdev Highly Frustrated Magnetism 2010 Johns Hopkins University.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Quantum phases and critical points of correlated metals Transparencies online at
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Review on quantum criticality in metals and beyond
Some open questions from this conference/workshop
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Quantum phases and critical points of correlated metals
Electrical and thermal transport near quantum phase transitions in condensed matter, and in dyonic black holes Sean Hartnoll (KITP) Pavel.
Quantum phases and critical points of correlated metals
Quantum phase transitions and the Luttinger theorem.
Possible realization of SU(2)_2 WZNW Quantum Critical Point in CaCu2O3
Deconfined quantum criticality
Qimiao Si Rice University
Quantum phase transitions out of the heavy Fermi liquid
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev

Classical Sherrington-Kirkpatrick model J ij : a Gaussian random variable with zero mean

Two routes to quantization A. Quantum rotor model n=1: Ising model is a transverse field g Spectrum at J ij =0 g n=3: randomly coupled spin dimers Spectrum at J ij =0 g

Two routes to quantization B. Heisenberg spins Spectrum at J ij =0 (2S+1)-fold degeneracy Generalize model to SU(N) spins and explore phase diagram in N, S plane

Outline A.Insulating quantum rotors. B.Insulating Heisenberg spins C.DMFT of a random t-J model D.Metallic spin glasses: DMFT of a random Kondo lattice

A. Insulating quantum rotors

A. Quantum rotor model J ij : a Gaussian random variable with zero mean

g Spin glass Paramagnet T=0 phases Local dynamic spin susceptibility Specific heat C ~ T (?) D.A. Huse and J. Miller, Phys. Rev. Lett. 70, 3147 (1993). J. Ye, S. Sachdev, and N. Read, Phys. Rev. Lett. 70, 4011 (1993). N. Read, S. Sachdev, and J. Ye, Phys. Rev. B 52, 384 (1995). A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, (2001).

T > 0 phase diagram g J. Ye, S. Sachdev, and N. Read, Phys. Rev. Lett. 70, 4011 (1993). N. Read, S. Sachdev, and J. Ye, Phys. Rev. B 52, 384 (1995). gcgc

B. Insulating Heisenberg spins

B. Heisenberg spin glass J ij : a Gaussian random variable with zero mean S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

T=0 phase diagram S N Spin glass order Specific heat C ~ T (C ~ T 2 ?) S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993). A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. Lett. 85, 840 (2000). A. Camjayi and M. J. Rozenberg, Phys. Rev. Lett. 90, (2003).

Quantum critical phase is described by fractionalized S=1/2 neutral spinon excitations  Spinon spectral density S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. Lett. 85, 840 (2000). A. Camjayi and M. J. Rozenberg, Phys. Rev. Lett. 90, (2003). T > 0 phase diagram

C. Doping the quantum critical spin liquid

C. DMFT of a random t-J model J ij : a Gaussian random variable with zero mean O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999).

= carrier density

O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999). Physical consequences of quantum criticality 1. Electron spectral function (photoemission) Momentum resolved spectral density

O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999). Physical consequences of quantum criticality 2. d.c Resistivity

O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999). Physical consequences of quantum criticality 3. NMR 1/T 1 relaxation rate

O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999). Physical consequences of quantum criticality 4. Optical conductivity

O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999). Phenomenological phase diagram for cuprates

D. Metallic spin glasses

C. DMFT of a random Kondo lattice model J ij : a Gaussian random variable with zero mean S. Sachdev, N. Read, and R. Oppermann, Phys. Rev. B 52, (1995). A. M. Sengupta and A. Georges, Phys. Rev. B 52, (1995).

S. Sachdev, N. Read, and R. Oppermann, Phys. Rev. B 52, (1995). A. M. Sengupta and A. Georges, Phys. Rev. B 52, (1995). JKJK

Outlook Spin glass order is an attractive candidate for a quantum critical point in the cuprates, on both theoretical and experimental grounds. (Impurities break the translational symmetry associated with charge- ordered states, and the Imry-Ma argument then prohibits a quantum critical point associated with charge order in the presence of randomness in two dimensions) A simple mean-field theory of a doped Heisenberg spin glass naturally reproduces all the “marginal” phenomenology. Needed: better theory of fluctuations in low dimensions