2/23/06Texas Colloquium Rods, Rotations, Gels Soft-Matter Experiment and Theory from Penn.

Slides:



Advertisements
Similar presentations
UNIT 6 (end of mechanics) Universal Gravitation & SHM.
Advertisements

The size of the coil is characterized by
Biological fluid mechanics at the micro‐ and nanoscale Lecture 7: Atomistic Modelling Classical Molecular Dynamics Simulations of Driven Systems Anne Tanguy.
Computer simulations of amphiphilic worms and bi-layers.
Introduction to DYNAMIC LIGHT SCATTERING (DLS) Christer Svanberg or PHOTON CORRELATION SPECTROSCOPY (PCS)
Classical Statistical Mechanics in the Canonical Ensemble.
Manipulator Dynamics Amirkabir University of Technology Computer Engineering & Information Technology Department.
Summer School 2007B. Rossetto1 5. Kinematics  Piecewise constant velocity t0t0 tntn titi t i+1 x(t) x(t i ) h t x i = v(t i ). h Distance runned during.
4/21/05Kent Liquid Crystal Day Liquid Crystal Elastomers Ranjan Mukhopadhyay Leo Radzihovsky Xiangjing Xing Olaf Stenull Andy Lau David Lacoste Fangfu.
DCMST May 23 rd, 2008 Liquid Crystals Gavin Lawes Wayne State University.
Incorporating Solvent Effects Into Molecular Dynamics: Potentials of Mean Force (PMF) and Stochastic Dynamics Eva ZurekSection 6.8 of M.M.
Optical Tweezers F scatt F grad 1. Velocity autocorrelation function from the Langevin model kinetic property property of equilibrium fluctuations For.
Chapter 8 Rotational Equilibrium and Rotational Dynamics.
Granular flows under the shear Hisao Hayakawa* & Kuniyasu Saitoh Dept. Phys. Kyoto Univ., JAPAN *
Chapter 12: Rolling, Torque and Angular Momentum.
Colloidal stabilization by nano-particle halos Ard Louis Dept. of Chemistry.
Group problem solutions 1.(a) (b). 2. In order to be reversible we need or equivalently Now divide by h and let h go to Assuming (as in Holgate,
Polymers PART.2 Soft Condensed Matter Physics Dept. Phys., Tunghai Univ. C. T. Shih.
Introduction to PHOTON CORRELATION SPECTROSCOPY
16/12/ Texture alignment in simple shear Hans Mühlhaus,Frederic Dufour and Louis Moresi.
Rotational Diffusion and Viscosity of Liquid Crystals
5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.
Fluctuations and Brownian Motion 2  fluorescent spheres in water (left) and DNA solution (right) (Movie Courtesy Professor Eric Weeks, Emory University:
Viscosity. Average Speed The Maxwell-Boltzmann distribution is a function of the particle speed. The average speed follows from integration.  Spherical.
Teachable Unit: Brownian Motion
Torque and Simple Harmonic Motion Week 13D2 Today’s Reading Assignment Young and Freedman:
Classical Mechanics Review 4: Units 1-19
Statistical Mechanics of Proteins
Spring Topic Outline for Physics 1 Spring 2011.
T. K. Ng, HKUST Lecture IV. Mechanics of rigid bodies.
College of Physics Science & Technology YANGZHOU UNIVERSITYCHINA Chapter 11ROTATION 11.1 The Motion of Rigid Bodies Rigid bodies A rigid body is.
Orbits, shapes and currents S. Frauendorf Department of Physics University of Notre Dame.
Lecture 11: Ising model Outline: equilibrium theory d = 1
Chap 12 Quantum Theory: techniques and applications Objectives: Solve the Schrödinger equation for: Translational motion (Particle in a box) Vibrational.
TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN.
Particle Aerodynamics S+P Chap 9. Need to consider two types of motion Brownian diffusion – thermal motion of particle, similar to gas motions. –Direction.
Modeling of Biofilaments: Elasticity and Fluctuations Combined D. Kessler, Y. Kats, S. Rappaport (Bar-Ilan) S. Panyukov (Lebedev) Mathematics of Materials.
12/01/2014PHY 711 Fall Lecture 391 PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 39 1.Brief introduction.
Kyongok Kang (FZ-Juelich) A (short) introduction to colloids Electric-field induced phase transitions, dynamical states and non-equilibrium critical behaviour.
Phonon spectrum measured in a 1D Yukawa chain John Goree & Bin Liu.
8. Selected Applications. Applications of Monte Carlo Method Structural and thermodynamic properties of matter [gas, liquid, solid, polymers, (bio)-macro-
Experimental results on the fluctuations in two out of equilibrium systems S. Joubaud, P.Jop, A. Petrossyan and S.C. Laboratoire de Physique, ENS de Lyon,
Stochastic Thermodynamics in Mesoscopic Chemical Oscillation Systems
31 Polyelectrolyte Chains at Finite Concentrations Counterion Condensation N=187, f=1/3,  LJ =1.5, u=3 c  3 = c  3 =
1 M.Sc. Project of Hanif Bayat Movahed The Phase Transitions of Semiflexible Hard Sphere Chain Liquids Supervisor: Prof. Don Sullivan.
Lecture III Trapped gases in the classical regime Bilbao 2004.
7. Lecture SS 2005Optimization, Energy Landscapes, Protein Folding1 V7: Diffusional association of proteins and Brownian dynamics simulations Brownian.
LATTICE BOLTZMANN SIMULATIONS OF COMPLEX FLUIDS Julia Yeomans Rudolph Peierls Centre for Theoretical Physics University of Oxford.
The Problem of Constructing Phenomenological Equations for Subsystem Interacting with non-Gaussian Thermal Bath Alexander Dubkov Nizhniy Novgorod State.
2. Brownian Motion 1.Historical Background 2.Characteristic Scales Of Brownian Motion 3.Random Walk 4.Brownian Motion, Random Force And Friction: The Langevin.
Oliver Boine-Frankenheim, HE-LHC, Oct , 2010, Malta Simulation of IBS (and cooling) Oliver Boine-Frankenheim, GSI, Darmstadt, Germany 1.
The Spinning Top Chloe Elliott. Rigid Bodies Six degrees of freedom:  3 cartesian coordinates specifying position of centre of mass  3 angles specifying.
Fluctuation-induced forces and wetting phenomena in colloid-polymer mixtures: Are renormalization group predictions measurable? Y. Hennequin, D. G. A.
Chapter 16 Kinetic Theory of Gases. Ideal gas model 2 1. Large number of molecules moving in random directions with random speeds. 2. The average separation.
Modeling fluctuations in the force-extension single-molecule experiments Alexander Vologodskii New York University.
Fokker-Planck Equation and its Related Topics
Frictional Cooling A.Caldwell MPI f. Physik, Munich FNAL
Physics 111 Lecture Summaries (Serway 8 th Edition): Lecture 1Chapter 1&3Measurement & Vectors Lecture 2 Chapter 2Motion in 1 Dimension (Kinematics) Lecture.
Cristiano De Michele Hierarchical propagation of chirality through reversible polymerization: the cholesteric phase of.
Diffusion over potential barriers with colored noise
Suspended Nanomaterials
ROTATIONAL MOTION Rotation axis: rotation occurs about an axis that does not move: fixed axis.
Lecture Rigid Body Dynamics.
Classical Mechanics Review 4: Units 1-22
Active Matter : Self-Assembly, Biomimetics, Autonomous Machine
Molecular Dynamics.
Microrheology and Rheological Phenomena in Microfluidics
Polymer Dynamics and Rheology
Physics 321 Hour 31 Euler’s Angles.
Ideal gas: Statistical mechanics
Presentation transcript:

2/23/06Texas Colloquium Rods, Rotations, Gels Soft-Matter Experiment and Theory from Penn.

2/23/06Texas Colloquium The Penn Team Theory –TCL –Randy Kamien –Andy Lau –Fangfu Ye –Ranjan Mukhopadhyay –David Lacoste –Leo Radzihovsky –X.J. Xing Experiment –Arjun Yodh –Dennis Discher –Jerry Gollub –Mohammad Islam –Ahmed Alsayed –Zvonimir Dogic –Jian Zhang –Mauricio Nobili –Yilong Han –Paul Dalhaimer –Paul Janmey

2/23/06Texas Colloquium Outline Some rods Rotational and Translational Diffusion of a rod th Anniversary of Einstein’s 1906 paper Chiral granular gas Semi-flexible Polymers in a nematic solvent Nematic Phase Carbon Nanotube Nematic Gels

2/23/06Texas Colloquium Comments Experimental advances in microsocpy and imaging: real space visualization of fluctuating phenomena in colloidal systems Wonderful “playground” to for interaction between theory and experiment to test what we know and to discover new effects Simple theories - great experiments

2/23/06Texas Colloquium Rods fd Virus 100 nm – 10,000 nm ~1 nm ~1 nm 900 nm 1 m m PMMA Ellipsoid Carbon Nanotube

2/23/06Texas Colloquium Einstein – Brownian Motion 1. “On the Movement of Small Particles Suspended in Stationary Liquid Required by the Molecular Kinetic Theory of Heat”, Annalen der Physik 17, 549 (1905); a = particle radius; h = viscosity; f = force

2/23/06Texas Colloquium Langevin Oscillator Dynamics Ignore inertial terms: Dynamics must retrieve equilibrium static fluctuations: sets scale of noise fluctuations to be 2 TG P. Langevin, Comptes Rendues 146, 530 (1908) Uhlenbeck and Ornstein, Phys. Rev. 36, 823 (1930)

2/23/06Texas Colloquium Diffusion with no potential Measurement of D gives Avogrado’s number Gaussian probability distribution R = Gas constant

2/23/06Texas Colloquium Density Diffusion

2/23/06Texas Colloquium J. Perrin Expts. (1908) N AVG =7.05 x 10 23

2/23/06Texas Colloquium Rotational Diffusion “On the Theory of Brownian Motion,” ibid. 19, 371 (1906): Idea of Brownian motion of arbitrary variable, application torotational diffusion of a spherical particle. t = torque P. Zeeman and Houdyk, Proc. Acad. Amsterdam, 28, 52 (1925) W. Gerlach, Naturwiss 15,15 (1927) G.E. Uhlenbeck and S. Goudsmit, Phys. Rev. 34,145 (1929) F. Perrin, Ann. de Physique 12, 169 (1929) W.A. Furry, “Isotropic Brownian Motion”, Phys. Rev. 107, 7 (1957)

2/23/06Texas Colloquium Diffusion of Anisotropic Particles 1. Brownian motion of an anisotropic particle: F. Perrin, J. de Phys. et Rad. V, 497 (1934); VII, 1 (1936). Interaction of Rotational and Translational Diffusion: Stephen Prager, J. of Chem. Physics 23, 12 (1955)

2/23/06Texas Colloquium Diffusion of a rod Han, Alsayed,Nobili,Zhang,TCL,Yodh

2/23/06Texas Colloquium Defining trajectories Can extract lab- and body-frame displacements, trajectories at fixed initial angle and averaged over initial angles.

2/23/06Texas Colloquium Rotational Langevin (2d)

2/23/06Texas Colloquium Translation and Rotation Anisotropic friction coefficients Lab-frame equations. In lab-frame, noise depends on angle: expect anisotropic crossover F. Perrin, J. de Phys. et Rad. V, 497 (1934); VII, 1 (1936).

2/23/06Texas Colloquium Body-frame equations

2/23/06Texas Colloquium Anisotropic Crossover 1.Diffusion tensor averaged over angles is isotropic. 2.Lab-frame diffusion is anisotropic at short times and isotropic at long times 3.Body-frame diffusion tensor is constant and anistropic at all times

2/23/06Texas Colloquium Lab- and body-frame diffusion

2/23/06Texas Colloquium Gaussian Body Frame Statistics

2/23/06Texas Colloquium Non-Gaussian lab-frame statistics Fixed q0: Gaussian at short times – same as body frame; Gaussian at long times – central limit theorem. Average q0: nonGaussian at short times, Gaussian at long times

2/23/06Texas Colloquium Non-Gaussian Distribution. Probability distribution at fixed angle and small t is Gaussian. The average over initial angles is not

2/23/06Texas Colloquium Rattleback gas Chiral Rattlebacks spin in a preferred direction; Achiral ones do not. Chiral wires spin in a preferred direction on a vibrating substrate Tsai, J.-C., Ye, Fangfu, Rodriguez, Juan, Gollub, J.P., and Lubensky, T.C., A Chiral Granular Gas, Phys. Rev. Lett. 94, (2005).

2/23/06Texas Colloquium Rattleback gas II

2/23/06Texas Colloquium Spin angular momentum dynamics

2/23/06Texas Colloquium Rattleback gas III Substrate frictionSpin-vorticity couplingVibrational torque

2/23/06Texas Colloquium Nematic phase Order Parameter Splay Twist Bend n =Frank director Frank free energy

2/23/06Texas Colloquium Isotropic-to-Nematic Transition D - rod diameter L – rod length order parameter S :  orientational distribution functions increasing concentration Onsager Ann. N. Y. Acad. Sci. 51, 627 (1949)

2/23/06Texas Colloquium Semi-flexible biopolymers 2 – 30 micron length 7-8 nm in diameter ~ 16 micron persistence length Actin Wormlike Micelle ( polybutadiene-polyethyleneoxide ) 10 – 50 micron length ~ 15 nm in diameter ~ 500 nm persistence length DNA 16 micron length 2 nm in diameter 40 nm persistence length Neurofilament micron length 12 nm in diameter ~ 220 nm persistence length

2/23/06Texas Colloquium Semi-flexible Polymer in Aligning Field

2/23/06Texas Colloquium Fluctuations G = 0 G > 0

2/23/06Texas Colloquium Polymers in fd-virus suspensions Actin 16  m Wormlike Micelle 500 nm DNA 50 nm Neurofilament 200 nm IsotropicNematic 10  m Hairpin defects Actin in Nematic Fd Dogic Z, Zhang J, Lau AWC, Aranda-Espinoza H, Dalhaimer P, Discher DE, Janmey PA, Kamien RD, Lubensky TC, Yodh AG, Phys. Rev. Lett. 92 (12): 2004

2/23/06Texas Colloquium Tangent-tangent correlations actin in nematic phase Orientational correlations decay exponentially l p – persistence length of actin in isotropic phase Isotropic phase – quasi 2D t(s’) t(s’+s) h(s)

2/23/06Texas Colloquium Polymer in nematic solvent Bending energyCoupling energyElastic energy