H 2 CO OH H2OH2O HCO QED e- Quantum dipolar gas Precision test Chemical reactions Quantum measurement Cold and Ultracold Molecules EuroQUAM, Durham, April.

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Bose-Einstein Condensation Ultracold Quantum Coherent Gases.
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Hyperfine-Changing Collisions of Cold Molecules J. Aldegunde, Piotr Żuchowski and Jeremy M. Hutson University of Durham EuroQUAM meeting Durham 18th April.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Precision measurement with ultracold atoms and molecules Jun Ye JILA, National Institute of Standards and Technology and Department of Physics, University.
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
Understanding Feshbach molecules with long range quantum defect theory Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland EuroQUAM.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Generation of short pulses
Making cold molecules from cold atoms
Ultracold Atoms, Mixtures, and Molecules
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Cold Atomic and Molecular Collisions
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
1 Cold molecules Mike Tarbutt LMI Lecture, 05/11/12.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Engineering and Control of Cold Molecules N. P. Bigelow University of Rochester.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Experiments with ultracold atomic gases
ATOM-ION COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 20 February 2008 Institute for Theoretical Physics, University.
Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Progress Towards Formation and Spectroscopy of Ultracold Ground-state Rb 2 Molecules in an Optical Trap H.K. Pechkis, M. Bellos, J. RayMajumder, R. Carollo,
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Ultracold Polar Molecules in Gases and Lattices Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland Quantum Technologies Conference:
Experimental study of Efimov scenario in ultracold bosonic lithium
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
Analysis of strongly perturbed 1 1  – 2 3  + – b 3  states of the KRb molecule J. T. Kim 1, Y. Lee 2, and B. Kim 3 1 Department of Photonic Engineering,
Maykel L. González-Martínez ultracold temperatures October 3 th, Bordeaux.
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Molecular Deceleration Georgios Vasilakis. Outline  Why cold molecules are important  Cooling techniques  Molecular deceleration  Principle  Theory.
Experiments with Stark-decelerated and trapped polar molecules Steven Hoekstra Molecular Physics Department ( Gerard Meijer) Fritz-Haber-Institutder Max-Planck-Gesellschaft.
D. DeMille, E.Hudson, N.Gilfoy, J.Sage, S.Sainis, S.Cahn, T.Bergeman, * E.Tiesinga † Yale University, * SUNY Stony Brook, † NIST Motivation: why ultracold.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Laser Cooling Molecules Joe Velasquez, III*, Peter L. Walstrom †, and Michael D. Di Rosa* * Chemistry Division, Physical Chemistry and Applied Spectroscopy.
Daisuke Ando, * Susumu Kuma, ** Masaaki Tsubouchi,** and Takamasa Momose** *Kyoto University, JAPAN **The University of British Columbia, CANADA SPECTROSCOPY.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
High-resolution Spectroscopy of Long- range Molecular Rydberg States of 85 Rb 2 Ryan Carollo, Edward E. Eyler, Yoann Bruneau Phillip L. Gould, and W. C.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Production and control of KRb molecules Exploring quantum magnetisms with ultra-cold molecules.
Agenda Brief overview of dilute ultra-cold gases
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Maykel L. González-Martínez Laurent Bonnet and Pascal Larrégaray Statistical Product-State Distributions for Cold Exoergic Reactions in External Fields.
Alternate Gradient deceleration of large molecules
Making cold molecules from cold atoms
Bose-Einstein Condensation Ultracold Quantum Coherent Gases
Ultracold polar molecules in a 3D optical lattice
Energy Transfer in a Trapped Gas of NH Molecules Heather Lewandowski, JILA / Department of Physics, University of Colorado The process of breaking one.
Presentation transcript:

H 2 CO OH H2OH2O HCO QED e- Quantum dipolar gas Precision test Chemical reactions Quantum measurement Cold and Ultracold Molecules EuroQUAM, Durham, April 18, 2009 J. Ye, JILA, NIST & CU Ye Labs

Why ultracold matter? We can understand it We can control it  The most precise measurements ever !  Quantum control, Quantum simulations, Quantum information  Fundamental understandings in condensed matter

Dipolar quantum systems Atoms Polar molecules R + _ + _ R Magnetic dipoles Electric dipoles d ~ Debye d ~ Bohr magneton e.g. BEC of Cr d=6  B (T. Pfau, Stuttgart) E I ~ n= /cm 3 E I ~ n= /cm 3

log 10 (density [cm -3 ]) log 10 (temperature [K]) Dipolar crystal Phase transition & many-body Dipolar quantum gas Quantum information Ultracold Chemistry Molecule optics & circuitry Cold controlled chemistry Novel collisions Fundamental tests Precision measurement Science with cold molecules High density, Ultracold temperature ~ K B T

log 10 (density [cm -3 ]) log 10 (temperature [K]) Stark, magnetic, optical deceleration Buffer-gas cooling Photo-association Coherent state transfer Quantum degeneracy Enhanced PA? Laser cooling? Sympathetic cooling? Evaporative cooling? Technology for cold molecules Carr, DeMille, Krems, & Ye, New. J. Phys. Special Issue (2009).

Molecules in single quantum states, under precise control, for internal & external motions Unprecedented study of fundamentally important reactions (Dial the rates): OH + HBr, OH + H 2 CO, CN + O 2, OH + NO, OH + OH, CN + NH 3, OH + H Ultracold molecules: Precision Chemistry H 2 CO OH H2OH2O HCO Controlled molecular collisions Ultracold chemical reactions Electric field Stereo-Chemistry E. Hudson et al., Phys. Rev. A 73, (2006).

Cold ground-state molecules - Stark slower 370 m/s 336 m/s 300 m/s 259 m/s 211 m/s 148 m/s 33 m/s Bethlem, Berden, Meijer, Phys. Rev. Lett (1999). Bochinski et al, Phys. Rev. Lett. 91, (2003). vv   0 = m/s to rest 1 K to 10 mK 10 4 – 10 6 molecules Density: 10 5 – 10 7 /cm 3 H 2 CO OH

Magnetic trapping of OH Sawyer et al., Phys. Rev. Lett. 98, (2007). decelerator Magnetic trap O d s H

Permanent-Magnet Trap NdFeB (N42SH) T op = 120 o C B res = 1.24 T 10mm

Trap Loading 0 V+12 kV-12 kV

0 V Trap Loading ~ 2 x 10 6 cm mK

OH He, D 2, NH 3, … beam source E cm ~ 5 cm -1 – 230 cm -1  Quantum threshold collisions  Resonant energy transfer Sawyer et al., Phys. Rev. Lett. 101, (2008). Trap and collisions

Absolute collision cross sections E cm (cm -1 ) J = 5/2 J = 3/2 2  3/2 84 cm -1 OH D 2 : (1) J = 1 quadrupole moment (2) J = 1  J =3 (300 cm -1 )

Electric Quadrupole guide: 13.5 cm ROC +/- 5 kV ~130 m/s ND 3 OH Magnet trap Buffer gas-cooled molecule source H O N H/D E cm < 5 cm -1 H/D The possibility to probe polar collisions? Doyle, Rempe, …

(a) (b) (c) (d) A Molecular MOT ? B. K. Stuhl et al., “A magneto-optical trap for polar molecules,” Phys. Rev. Lett. 101, (2008). TiO

Polar molecules near quantum degeneracy J. Bohn (JILA), J. Hutson (Durham) S. Ospelkaus, K.-K. Ni, M. Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. S. Julienne, D. Jin, and J. Ye KRb molecules 40 K Fermions 87 Rb Bosons  Temperature ~400nK  T/T F =3  Density ~10 12 /cm 3  =0.01  Dipole ~0.5 Debye  Long lived (~200ms)

|  f (R) | 2 EKEK |  g ( R )| 2 |  e ( R )| 2 Laser Internuclear distance R Energy Traditional photo-association Pillet Stwalley Heinzen Bigelow …

|  f (R) | 2 EKEK Laser |  e ( R )| 2 |  g ( R )| 2 Energy Internuclear distance R Resonant enhancement DeMille Weidemüller

|  FR (R) | 2 |  e ( R )| 2 EKEK Laser Internuclear distance R Energy Resonant enhancement – in the ground Côte

molecules > V(R) E binding Magnetic field Colliding atoms B R R R R Energy Magnetic-field Feshbach resonance Field-tunable scattering resonance Zirbel et al., Phys. Rev. Lett. 100, (2008).

Going to really deep ground potential The problem – overlap Laser fields: 1. Impractically strong 2. Nonlinear excitations Ground Electronic state Pump Dump Excited electronic state

Coherent weak fields to achieve strong field effect Pump pulse Dump pulse Wave-packet dynamics bridge the overlap mismatch Coherent accumulations resolve single quantum state Pe’er, Shapiro, Stowe, Shapiro, Ye, Phys. Rev. Lett. 98, (2007). Excited electronic state Ground Electronic state Pump Dump

11 22 33 11 33 11 Inter-nuclear distance R Energy v = 0, N = 0, J = 0 Good Franck-Condon for both up and down transitions. Excited state is triplet + singlet mixture Sr 2 11 22 Frequency comb assisted STIRAP Feshbach + STIRAP Ni et al., Science 322, 231 (2008) Ospelkaus et al., Nature Phys. 4, 622 (2008)

JILA Sr optical atomic clocks Inaccuracy ~ 1 x (uncertainty in SI unit of time: 4 x ) Ludlow et al., Science 319, 1805 (2008). Campbell et al., Science 324, 360 (2009). Counting the light ripple

Raman + EIT Dark Resonance  1 scanned,  2 fixed  1 fixed,  2 scanned

Stark Shift (MHz) B=1.1139(1) GHz d=0.566(17) Debye Stark Spectroscopy

4μs one-way transfer Coherent Transfer - STIRAP 92% efficiency No heating T/T F =2.5

No Heating in Transfer Process Direct Imaging of Molecules 0 ms 1 ms 3 ms 6 ms

Trapped Ground state polar molecules Trap oscillation Lifetime ~ 150 ms E Pol Ospelkaus et al., Faraday Discussions 142

Atom-molecule collisions 3x10 4 K,  =70(10)ms 3x10 5 K,  =6(1)ms KRb+ K

KRb+ Rb =5.4(1.0) cm 3 /s =6.5(1.0) cm 3 /s Atom-molecule collisions

A harpoon mechanism? J. Bohn D. Herschbach J. Hutson P. Julienne ionization energy - electron affinity (1) Near unity probability loss due to short-range reactions (2) Quantum threshold behavior - long-range potential (van der Waals “Length”) characterizes universal inelastic scattering Upper bound: 11 x cm 3 /s (KRb + K); 7.9 x cm 3 /s (KRb + Rb)

Rb 2 KRb K2K2 KRb+ K -> K 2 +Rb+ exothermic endothermic KRb+ Rb -> Rb 2 +K- Atom-molecule collisions

Nuclear spin states for v = 0, N = 0 We populate a single nuclear spin state J. Aldegunde J. Hutson

Dipolar collision resonance? Collisions of two ground-state Fermionic polar molecules Evaporative cooling? Control of elastic/inelastic collisions? J. Bohn U(R) (nK) Shape or Feshbach? We will know soon.

Quantum information (strong dipolar interactions, long coherence time) Quantum degeneracy (e.g. BEC) (anisotropic interactions) Dipolar phase transition (Condensed matter system) Ultracold molecules: quantum physics DeMille, Phys. Rev. Lett. 88, (2002). H.P. Buchler et al., PRL 98, (2007). T. Koch et al., Nature Phys. 4, 218 (2008). Micheli, Brennen, Zoller, Nature Physics 2, 341 (2006).

Special thanks J. Bohn (JILA) P. Julienne (NIST), S. Kotochigova (Temple), J. Hutson (Durham) OH and H 2 CO B. Sawyer B. Stuhl M. Yeo E. Hudson (UCLA) B. Lev (Illinois UC) H. Lewandowski (JILA) J. Bochinski (NC State) KRb S. Ospelkaus K.-K. Ni M. Miranda B. Neyenhuis D. Wang A. Pe’er (Israel) J. Zirbel Deborah Jin