Section 2.6: Related Rates

Slides:



Advertisements
Similar presentations
4.6 Related Rates Any equation involving two or more variables that are differentiable functions of time t can be used to find an equation that relates.
Advertisements

1 Related Rates Section Related Rates (Preliminary Notes) If y depends on time t, then its derivative, dy/dt, is called a time rate of change.
2019 Related Rates AB Calculus.
4.6 Related Rates What you’ll learn about Related Rate Equations Solution Strategy Simulating Related Motion Essential Questions.
Related Rates Chapter 3.7. Related Rates The Chain Rule can be used to find the rate of change of quantities that are related to each other The important.
ITK-122 Calculus II Dicky Dermawan
Related Rates Kirsten Maund Dahlia Sweeney Background Calculus was invented to predict phenomena of change: planetary motion, objects in freefall, varying.
3.11 Related Rates Mon Dec 1 Do Now Differentiate implicitly in terms of t 1) 2)
1. Read the problem, pull out essential information and identify a formula to be used. 2. Sketch a diagram if possible. 3. Write down any known rate of.
Section 2.8 Related Rates Math 1231: Single-Variable Calculus.
 A ladder 10m long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 1m/s how fast is the top of the.
Objectives: 1.Be able to find the derivative of an equation with respect to various variables. 2.Be able to solve various rates of change applications.
Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
When gear A makes x turns, gear B makes u turns and gear C makes y turns., 3.6 Chain rule y turns ½ as fast as u u turns 3 times as fast as x So y turns.
DERIVATIVES Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity.
3.11 Related Rates Mon Nov 10 Do Now
Definition: When two or more related variables are changing with respect to time they are called related rates Section 2-6 Related Rates.
Section 2.6 Related Rates Read Guidelines For Solving Related Rates Problems on p. 150.
Related rates.
2.8 Related Rates.
Miss Battaglia AP Calculus Related rate problems involve finding the ________ at which some variable changes. rate.
1 Related Rates Finding Related Rates ● Problem Solving with Related Rates.
Aim: How do we find related rates when we have more than two variables? Do Now: Find the points on the curve x2 + y2 = 2x +2y where.
Related Rates M 144 Calculus I V. J. Motto. The Related Rate Idea A "related rates" problem is a problem which involves at least two changing quantities.
Section 4.1: Related Rates Practice HW from Stewart Textbook (not to hand in) p. 267 # 1-19 odd, 23, 25, 29.
R ELATED R ATES. The Hoover Dam Oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant.
3.9 Related Rates 1. Example Assume that oil spilled from a ruptured tanker in a circular pattern whose radius increases at a constant rate of 2 ft/s.
Lesson 3-10a Related Rates. Objectives Use knowledge of derivatives to solve related rate problems.
Calculus warm-up Find. xf(x)g(x)f’(x)g’(x) For each expression below, use the table above to find the value of the derivative.
RELATED RATES Section 2.6.
APPLICATION OF DIFFERENTIATION AND INTEGRATION
Ch 4.6 Related Rates Graphical, Numerical, Algebraic by Finney Demana, Waits, Kennedy.
In this section, we will investigate the question: When two variables are related, how are their rates of change related?
RELATED RATES. P2P22.7 RELATED RATES  If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing and their rates.
Warm-Up If x 2 + y 2 = 25, what is the value of d 2 y at the point (4,3)? dx 2 a) -25/27 c) 7/27 e) 25/27 b) -7/27 d) 3/4.
Section 4.6 Related Rates.
Related Rates. The chain rule and implicit differentiation can be used to find the rates of change of two or more related variables that are changing.
6.5: Related Rates Objective: To use implicit differentiation to relate the rates in which 2 things are changing, both with respect to time.
Miss Battaglia AP Calculus Related rate problems involve finding the ________ at which some variable changes. rate.
Differentiation: Related Rates – Day 1
Related Rates Section 4.6. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does.
4.1 - Related Rates ex: Air is being pumped into a spherical balloon so that its volume increases at a rate of 100cm 3 /s. How fast is the radius of the.
Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
Sec 4.1 Related Rates Strategies in solving problems: 1.Read the problem carefully. 2.Draw a diagram or pictures. 3.Introduce notation. Assign symbols.
Bonaventura Francesco Cavalieri 1598 – 1647 Bonaventura Francesco Cavalieri 1598 – 1647 Bonaventura Cavalieri was an Italian mathematician who developed.
1 Related Rates Finding Related Rates ● Problem Solving with Related Rates.
DO NOW Approximate 3 √26 by using an appropriate linearization. Show the computation that leads to your conclusion. The radius of a circle increased from.
4.1 Related Rates Greg Kelly, Hanford High School, Richland, Washington.
Section 4.6 Related Rates. Consider the following problem: –A spherical balloon of radius r centimeters has a volume given by Find dV/dr when r = 1 and.
3.9 Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity. DIFFERENTIATION.
Examples of Questions thus far…. Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
Section 2.8 Related Rates. RELATED RATE PROBLEMS Related rate problems deal with quantities that are changing over time and that are related to each other.
3 DERIVATIVES.
Logarithmic Differentiation 对数求导. Example 16 Example 17.
Review Implicit Differentiation Take the following derivative.
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
Warm up 1. Calculate the area of a circle with diameter 24 ft. 2. If a right triangle has sides 6 and 9, how long is the hypotenuse? 3. Take the derivative.
Section 2-6 Related Rates
DERIVATIVES WITH RESPECT TO TIME
Table of Contents 19. Section 3.11 Related Rates.
Related Rates (2.6) October 5th, 2017
Related Rates (2.6) October 7th, 2016
Related Rates.
Background Calculus was invented to predict phenomena of change: planetary motion, objects in freefall, varying populations, etc. In many practical applications,
Section 2.6 Calculus AP/Dual, Revised ©2017
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
Related Rates Chapter 5.5.
§3.9 Related rates Main idea:
Related Rates and Applications
AGENDA: 1. Copy Notes on Related Rates and work all examples
Presentation transcript:

Section 2.6: Related Rates

Introduction to Related Rates We have seen a lot of relations (whether implicit or explicit) that involve two variables (frequently x and y). It is possible these two variables are themselves functions of another variable, such as t. For instance:

Introduction to Related Rates Let’s investigate what occurs when t changes: t x y Equation As x and y change, their rates of change are related to each other. But how are they related? Notice how when t changes, both the x and y change in relation to the value of t.

Introduction to Related Rates In order to take the derivative of the relation using x and y , it must be done with the respect to t. For instance: Differentiate both sides Chain Rule Twice Now we know how the rate of change for x and y are related to each other. In our exercises, we will not need to know the exact relations.

Example 1 Suppose x and y are both differentiable functions of t and are related by . Find when x = 10, if when x = 10. Find the derivative by differentiating both sides. Chain Rule Substitute the known information Solve for the unknown

Example 2 Suppose x and y are both differentiable functions of t and are related by . Find when x = 9, if when x = 9 and y>0. Find the derivative by differentiating both sides. Find other important values: x Chain Rule Substitute the known information Solve for the unknown

Example 3 A spherical balloon is being filled with a gas in such a way that when the radius is 2ft, the radius is increasing at the rate 1/6 ft/min. How fast is the volume ( ) changing at this time? Find the derivative by differentiating both sides. Chain Rule Substitute the known information ft3 per minute Solve for the unknown

Related Rates Guidelines Draw a figure, if appropriate, and assign variables to the quantities that vary. (Be careful not to label a quantity with a number unless it never changes in the problem) Find a formula or equation that relates the variables. (Eliminate unnecessary variables) Differentiate the equations. (typically implicitly) Substitute specific numerical values and solve algebraically for any required rate. (The only unknown value should be the one that needs to be solved for.)

Example 1 A person 6 ft tall is walking away from a streetlight 20 ft high at the rate of 7 ft/s. At what rate is the length of the person’s shadow increasing? Find the rates by differentiating both sides. 20 ft 6 ft Chain Rule y x Substitute the known information Using similar triangles, the equation is: Solve for the unknown ft/s

Example 2 A bag is tied to the top of a 5 m ladder resting against a vertical wall. Suppose the ladder begins sliding down the wall in such a way that the foot of the ladder is moving away from the wall. How fast is the bag descending at the instant the foot of the ladder is 4 m from the wall and the foot is moving away at the rate of 2 m/s? Find the rates by differentiating both sides. 5 m y Ladder Chain Rule Substitute the known information x Using The Pythagorean Theorem, the equation is: Find other important values: Solve for the unknown m/s x

Example 3 A trough 10 ft long has a cross section that is an isosceles triangle 3 ft deep and 8 ft across. If water flows in at the rate 2 ft3/min, how fast is the surface rising when the water is 2 ft deep? Find the rates by differentiating both sides. 10 ft 8 ft Nothing is known about b… b 3 ft h Using similar triangles: Chain Rule Substitute the known information Using the volume of a prism, the equation is: Solve for the unknown ft/min

Example 4 A rocket launches with a velocity of 550 miles per hour. 25 miles away there is a photographer filming the launch. At what rate is the angle of elevation of the camera changing when the rocket achieves an altitude of 25 miles? Find the rates by differentiating both sides. This is “x” and there is no “x” in the derivative… x Chain Rule Substitute the known information Θ 25 mi Using The Trigonometry, the equation is: Use “x” to find other important values: Solve for the unknown rad/h