Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)

Slides:



Advertisements
Similar presentations
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Advertisements

Dynamics of Spin-1 Bose-Einstein Condensates
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Josephson Devices with Cold Atoms Andrea Trombettoni (SISSA, Trieste) Perugia, 18 July 2007.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Magnetism in systems of ultracold atoms: New problems of quantum many-body dynamics E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard,
冷原子實驗之基本原理 (I) 韓殿君 國立中正大學物理系 2003 年 8 月 5 日 於理論中心.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Anderson localization in BECs
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Measuring correlation functions in interacting systems of cold atoms Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard.
1 Simulation and Detection of Relativistic Effects with Ultra-Cold Atoms Shi-Liang Zhu ( 朱诗亮 ) School of Physics and Telecommunication.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Non-equilibrium dynamics of cold atoms in optical lattices Vladimir Gritsev Harvard Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Guillermina Ramirez San Juan
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov (BU and Harvard) (Harvard) Ehud Altman, (Weizmann and Harvard) Eugene Demler,
Coherence and decay within Bose-Einstein condensates – beyond Bogoliubov N. Katz 1, E. Rowen 1, R. Pugatch 1, N. Bar-gill 1 and N. Davidson 1, I. Mazets.
Critical fluctuations of an attractive Bose gas in a double well potential (no molecules here) Marek Trippenbach, with B. Malomed, P. Ziń, J. Chwedeńczuk,
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Ana Maria Rey March Meeting Tutorial May 1, 2014.
Experiments with Fermi e Bose atomic gases in optical lattices Giovanni Modugno LENS, Università di Firenze, and INFM XXVII Convegno di Fisica Teorica,
Non-Abelian Josephson effect Wu-Ming Liu ( 刘伍明 ) (Institute of Physics, Chinese Academy of Sciences) ( 中国科学院物理所 )
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Bose-Einstein condensates in random potentials Les Houches, February 2005 LENS European Laboratory for Nonlinear Spectroscopy Università di Firenze J.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Quantum Technologies Conference, Toruń 1 The project „Photonic implementations of quantum-enhanced technologies” is realized within the TEAM.
Strong correlations and quantum vortices for ultracold atoms in rotating lattices Murray Holland JILA (NIST and Dept. of Physics, Univ. of Colorado-Boulder)
Unusual discrete soliton and breather modes collective excitations in Bose-Einstein condensates in optical lattice Bishwajyoti Dey Department of Physics.
Integrable model in Bose-Einstein condensates
1 Exploring New States of Matter in the p-orbital Bands of Optical Lattices Congjun Wu Kavli Institute for Theoretical Physics, UCSB C. Wu, D. Bergman,
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Non-Abelian Josephson effect and fractionalized vortices Wu-Ming Liu (刘伍明) ( Institute of Physics, CAS )
Optically Trapped Low-Dimensional Bose Gases in Random Environment
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Interazioni e transizione superfluido-Mott. Bose-Hubbard model for interacting bosons in a lattice: Interacting bosons in a lattice SUPERFLUID Long-range.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Subir Sachdev Superfluids and their vortices Talk online:
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
Agenda Brief overview of dilute ultra-cold gases
Ultracold gases Jami Kinnunen & Jani-Petri Martikainen Masterclass 2016.
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
ultracold atomic gases
Anderson localization of weakly interacting bosons
Qiang Gu Ferromagnetism in Bose Systems Department of Physics
Novel quantum states in spin-orbit coupled quantum gases
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
One-Dimensional Bose Gases with N-Body Attractive Interactions
Part II New challenges in quantum many-body theory:
Spectroscopy of ultracold bosons by periodic lattice modulations
Some aspects of 1D Bose gases
Presentation transcript:

Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)

Collaborators S.T. Chui (Delaware Univ.) J.Q. Liang (Shanxi Univ.) B.A. Malomed (Telviv Univ.) Q. Niu (Texas Univ. at Austin) S.Q. Shen (HongKong Univ.) B. Wu (IOP, CAS) Z.D. Zhang (IMR, CAS)

Outline 1. Coherence 2. Dynamics 3. Quantum transport 4. Quantum phase transition 5. Spinor BEC 6. Boson - Fermion mixture

1. Coherence (decoherence) 1.1. Atom-molecule coherence 1.2. Atom-molecule coherence 1.3. Molecule-molecule coherence 1.4. Decoherence

1.1. Atomic BEC coherence W. Ketterle, Science 275, 637 (1997).

W.M. Liu, B. Wu, Q. Niu, Nonlinear effects in interference of Bose-Einstein condensates, Phys. Rev. Lett. 84, 2294 (2000).

Gross-Pitaevskii equation Long time solution

Theoretical explanation Fringe position Central fringe

Experimental prediction: 1. Energy level 2. Many wave packets Ratio of level width to level spacing

Two component BEC PRL 81, 1539, 1543 (1998).

W.D. Li, X.J. Zhou, Y.Q. Wang, J.Q. Liang, W.M. Liu, Time evolution of relative phase in two-component Bose-Einstein condensates with a coupling drive, Phys. Rev. A64, (2001).

1.2. Atom-molecule coherence ( 87 Rb 2 ) E.A. Donley et al., Nature 417, 529 (2002).

1.3. Molecule-molecule coherence R.H. Wynar et al., Science 287, 1016 (2000).

1.4. Decoherence M.K. Kasevich, Science 298, 1363 (2002).

2. Dynamics 2.1. BEC near Feshbach resonance 2.2. Soliton 2.3. Vortex

S. Inouye et al., Nature 392, 151 (1998) BEC near Feshbach resonance

Z. X. Liang, Z. D. Zhang, W. M. Liu, Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential, Phys. Rev. Lett. 74, (2005).

L. Khaykovich et al., Science 296, 1290 (2002) Soliton

Z.W. Xie, Z.X. Cao, E.I. Kats, W.M. Liu, Nonlinear dynamics of dipolar Bose-Einstein condensate in optical lattice, Phys. Rev. A 71, (2005).

L. Li, B.A. Malomed, D. Mihalache, W.M. Liu, Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates, Phys. Rev. E 73, (2006).

3. Quantum transport W.M. Liu, W.B. Fan, W.M. Zheng, J.Q. Liang, S.T. Chui, Quantum tunneling of Bose-Einstein condensates in optical lattices under gravity, Phys. Rev. Lett. 88, (2002).

Landau-Zener tunneling Barrier between lattices is low Localized level between lattices is coupling Miniband Adiabatic approximation Tunneling between delocalized states in different Bloch bands Potential energy and Bloch bands

Tilted bands and WS ladders Wannier-Stark tunneling An external field Wavefunction of miniband is localization Miniband is divided into discrete level Wannier-Stark ladder Tunneling between localized states in different individual wells — Wannier-Stark localized states

At high temperature: Arrhenius law Temperature dependence

Crossover temperature At low temperature: Pure quantum tunneling At intermediate temperature: Thermally assisted tunneling

4. Quantum phase transition Superfluid  Mott insulator Insulator + disorder = Bose glass Insulator + weak disorder = Anderson glass Berezinskii–Kosterlitz–Thouless transation Magnetic phase transition

M. Greiner et al., Nature 415, 39 (2002)

J.J. Liang, J.Q. Liang, W.M. Liu, Quantum phase transition of condensed bosons in optical lattices, Phys. Rev. A68, (2003).

Z.W. Xie, W.M. Liu, Superfluid–Mott insulator transition of dipolar bosons in an optical lattice, Phys. Rev. A70, (200 4).

G.P. Zheng, J.Q. Liang, W.M. Liu, Phase diagram of two-species Bose-Einstein condensates in an optical lattice , Phys. Rev. A71, (2005)

P.B. He, Q. Sun, S.Q. Shen, W. M. Liu, Magnetic quantum phase transition of cold atoms in optical lattice, Phys. Rev. A 76, (2007).

A.C. Ji, X.C. Xie, W. M. Liu, Magnetic dynamics of polarized light in arrays of microcavities, Phys. Rev. Lett. 99, (2007).

2.5. Spinor BEC J. Stenger, Nature 396, 345 (1998).

Z.W. Xie, W.P. Zhang, S.T. Chui, W.M. Liu, Magnetic solitons of spinor Bose-Einstein condensates in optical lattice, Phys. Rev. A69, (2004).

Z.D. Li, P.B. He, L.Li, J.Q. Liang, W.M. Liu, Soliton collision of spinor Bose-Einstein condensates in optical lattice, Phys. Rev. A71, (2005).

L. Li, Z.D. Li, B. A. Malomed, D. Mihalache, W. M. Liu, Exact soliton solutions and nonlinear modulation instability in spinor Bose-Einstein condensates, Phys. Rev. A 72, (2005).

2.6. Boson - Fermion mixture R.G. Hulet, Science 291, 2570 (2001).

Summary 1. Coherence 2. Dynamics 3. Quantum transport 4. Quantum phase transition 5. Spinor BEC 6. Boson - Fermion mixture

Thanks !