Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland ENGI 1313 Mechanics I Lecture 37:Analysis of Equilibrium Problems with Dry Friction
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 2 Lecture 37 Objective to illustrate the equilibrium analysis of rigid bodies subjected to dry friction force by example
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 3 Equilibrium and Frictional Forces Analysis Steps FBD Assume frictional force to be an unknown Do not assume F s = s N unless impending motion is stated Determine the Number of Unknowns If more unknowns than equations, assume friction force at some or all contact points Apply Equilibrium Equations Impending motion or tipping
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 4 Class of Friction Problems W W 1. Equilibrium Geometry and dimensions are known Draw FBD # Unknowns = # Equilibrium Equations Solve for reaction forces No motion, if
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 5 Class of Friction Problems (cont.) 2. Impending Motion at All Contact Points # Unknowns =# Equilibrium Equations + # Friction Equations Impending Motion Motion
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 6 Class of Friction Problems (cont.) 2. Impending Motion at All Contact Points Find the minimum angle ( ) for a 100 N bar to be placed against the wall. FBD Unknowns? 55 Equations? 3 Equilibrium Equations 2 Friction Equations
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 7 Class of Friction Problems (cont.) 3. Impending Motion at Some Contact Points # Unknowns <# Equilibrium Equations + # Friction Equations or # Unknowns <# Equilibrium Equations + # Equations for Tipping May have to evaluate both scenarios If so, governing case has minimum requirements
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 8 Class of Friction Problems (cont.) 3. Impending Motion at Some Contact Points Find horizontal force (P) to cause movement. FBD # Unknowns? 77 Equations Find minimum P or
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 9 Example A uniform ladder weighs 20 lb. The vertical wall is smooth (no friction). The floor is rough with s = 0.8. Find the minimum force P needed to move (tip or slide) the ladder.
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 10 Example (cont.) FBD # Unknowns? 44 Equilibrium Equations? 33 Assumptions? Tipping occurs W FAFA NANA NBNB
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 11 Example (cont.) Analysis W FAFA NANA
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 12 Example (cont.) Check Tipping Assumption Tipping occurs W FAFA NANA
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 13 Example Drum weight is 100 lb, s = 0.5, a = 3 ft and b = 4 ft. Find the smallest magnitude of P that will cause impending motion (tipping or slipping) of the drum.
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 14 Example (cont.) FBD Assume Slipping Occurs x P ft 4 ft W = 100lb FsFs N
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 15 Example (cont.) For Slipping x P ft 4 ft W = 100 lb FsFs N
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 16 Example (cont.) Check x Slipping x P ft 4 ft FsFs N O W = 100 lb
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 17 Example (cont.) Assume Tipping Occurs P ft 4 ft FsFs N W = 100 lb
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 18 Example (cont.) Check F s Slipping Calculate minimum P based on slipping condition P ft 4 ft FsFs N W = 100 lb
ENGI 1313 Statics I – Lecture 37© 2007 S. Kenny, Ph.D., P.Eng. 19 References Hibbeler (2007) mech_1