7.3 Volumes Quick Review What you’ll learn about Volumes As an Integral Square Cross Sections Circular Cross Sections Cylindrical Shells Other Cross.

Slides:



Advertisements
Similar presentations
Section Volumes by Slicing
Advertisements

Volumes by Slicing: Disks and Washers
Volume by Parallel Cross Section; Disks and Washers
- Volumes of a Solid The volumes of solid that can be cut into thin slices, where the volumes can be interpreted as a definite integral.
DO NOW: Find the volume of the solid generated when the
Disks, Washers, and Cross Sections Review
Section Volumes by Slicing
Volumes. Right Cylinder Volume of a Right Cylinder (Slices) Cross section is a right circular cylinder with volume Also obtained as a solid of revolution.
More on Volumes & Average Function Value. Average On the last test (2), the average of the test was: FYI - there were 35 who scored a 9 or 10, which means.
 A k = area of k th rectangle,  f(c k ) – g(c k ) = height,  x k = width. 6.1 Area between two curves.
Applications of Integration Copyright © Cengage Learning. All rights reserved.
Volumes – The Disk Method Lesson 7.2. Revolving a Function Consider a function f(x) on the interval [a, b] Now consider revolving that segment of curve.
Applications of Integration
6.2 - Volumes. Definition: Right Cylinder Let B 1 and B 2 be two congruent bases. A cylinder is the points on the line segments perpendicular to the bases.
APPLICATIONS OF INTEGRATION
Volume: The Disk Method
Chapter 6 – Applications of Integration
SECTION 7.3 Volume. VOLUMES OF AN OBJECT WITH A KNOWN CROSS-SECTION  Think of the formula for the volume of a prism: V = Bh.  The base is a cross-section.
7.3 Day One: Volumes by Slicing Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice.
3 3 3 Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice is s 2 dh. If we put zero at the top.
Finding Volumes.
Review: Volumes of Revolution. x y A 45 o wedge is cut from a cylinder of radius 3 as shown. Find the volume of the wedge. You could slice this wedge.
6.2C Volumes by Slicing with Known Cross-Sections.
Volume: The Shell Method Lesson 7.3. Find the volume generated when this shape is revolved about the y axis. We can’t solve for x, so we can’t use a horizontal.
Section 7.2 Solids of Revolution. 1 st Day Solids with Known Cross Sections.
7.3 Volumes by Cylindrical Shells
A = x2 s2 + s2 = x2 2s2 = x2 s2 = x2/2 A = x2/2 A = ½ πx2
Do Now: #10 on p.391 Cross section width: Cross section area: Volume:
7.3 VOLUMES. Solids with Known Cross Sections If A(x) is the area of a cross section of a solid and A(x) is continuous on [a, b], then the volume of the.
Chapter 6 – Applications of Integration 6.3 Volumes by Cylindrical Shells 1Erickson.
Finding Volumes Disk/Washer/Shell Chapter 6.2 & 6.3 February 27, 2007.
Volumes of Revolution Day 4 Volumes in Bases. The title is deceiving This section isn’t actually rotations – instead, there will be a shape whose base.
7.3 Day One: Volumes by Slicing. Volumes by slicing can be found by adding up each slice of the solid as the thickness of the slices gets smaller and.
Volume Section 7.3a. Recall a problem we did way back in Section 5.1… Estimate the volume of a solid sphere of radius 4. Each slice can be approximated.
Warm Up. Volume of Solids - 8.3A Big Idea Just like we estimate area by drawing rectangles, we can estimate volume by cutting the shape into slices,
Volumes of Revolution The Shell Method Lesson 7.3.
7.2 Areas in the Plane.
Solids of Revolution Disk Method
Volume: The Disc Method
Ch 7.3 Volumes Calculus Graphical, Numerical, Algebraic by
Let R be the region bounded by the curve y = e x/2, the y-axis and the line y = e. 1)Sketch the region R. Include points of intersection. 2) Find the.
Volumes Using Cross-Sections Solids of Revolution Solids Solids not generated by Revolution Examples: Classify the solids.
Finding Volumes Chapter 6.2 February 22, In General: Vertical Cut:Horizontal Cut:
Volumes Lesson 6.2.
Volume: The Shell Method
VOLUMES.
Volumes by Slicing 7.3 Solids of Revolution.
Finding Volumes. In General: Vertical Cut:Horizontal Cut:
Volumes by Slicing. disk Find the Volume of revolution using the disk method washer Find the volume of revolution using the washer method shell Find the.
Ch. 8 – Applications of Definite Integrals 8.3 – Volumes.
Volume Find the area of a random cross section, then integrate it.
6.2 - Volumes Roshan. What is Volume? What do we mean by the volume of a solid? How do we know that the volume of a sphere of radius r is 4πr 3 /3 ? How.
SECTION 7-3-C Volumes of Known Cross - Sections. Recall: Perpendicular to x – axis Perpendicular to y – axis.
Overview Basic Guidelines Slicing –Circles –Squares –Diamonds –Triangles Revolving Cylindrical Shells.
Volume: The Shell Method 7.3 Copyright © Cengage Learning. All rights reserved.
6.3 Volumes by Cylindrical Shells. Find the volume of the solid obtained by rotating the region bounded,, and about the y -axis. We can use the washer.
Calculus 6-R Unit 6 Applications of Integration Review Problems.
Volumes of Solids of Rotation: The Disc Method
The region enclosed by the x-axis and the parabola is revolved about the line x = –1 to generate the shape of a cake. What is the volume of the cake? DO.
Section 7.3: Volume The Last One!!! Objective: Students will be able to… Find the volume of an object using one of the following methods: slicing, disk,
8-3 Volumes.
In this section, we will learn about: Using integration to find out
Chapter 8 Applications of Definite Integral Section 8.3 Volumes.
Chapter 8 Applications of Definite Integral Volume.
Volume of Solids with Known Cross Sections
Applications Of The Definite Integral
AP Calculus Honors Ms. Olifer
6.3 – Volumes By Cylindrical Shells
Presentation transcript:

7.3 Volumes

Quick Review

What you’ll learn about Volumes As an Integral Square Cross Sections Circular Cross Sections Cylindrical Shells Other Cross Sections Essential Question How can we use calculus to compute volumes of certain solids in three dimensions?

Find the volume of the solid when the curve is rotated around the x-axis.

Volume of a Solid The definition of a solid of unknown integrable cross section area A(x) from x = a to x = b is the integral of A from a to b, How to Find Volumes by the Method of Slicing 1.Sketch the solid and a typical cross section. 2.Find a formula for A(x). 3.Find the limits of integration. 4.Integrate A(x) to find the volume.

Example Square Cross Sections 1.A pyramid 3 m high has congruent triangular sides and a square base that is 3 m on each side. Each cross section of the pyramid parallel to the base is a square. Find the volume of the pyramid. 1. Sketch: Draw the pyramid with its vertex at the origin and its altitude along the interval 0 < x < 3. Sketch a typical cross section at a point x between 0 and Find a formula for A(x): The cross section at x is a square x meters on a side, so the formula will be:

Example Square Cross Sections 1.A pyramid 3 m high has congruent triangular sides and a square base that is 3 m on each side. Each cross section of the pyramid parallel to the base is a square. Find the volume of the pyramid. 3. Find the limits of integration: The square goes from x = 0 to x = Integrate to find the volume: m 3

Example A Solid of Revolution 2.The region between the graph f (x) = 2 + x cos x and the x-axis over the interval [– 2, 2] is revolved about the x-axis to generate a solid. Find the volume of the solid. Revolving the region about the x-axis generates a ____________ solid. vase-shaped The cross section at a typical point x is __________. circular The radius is equal to ______. f (x)

Example Finding Volumes Using Cylindrical Shells 3.Find the volume of the solid generated by revolving about the x-axis the region bounded by

Pg. 406, 7.3 #1-25 odd

Cylindrical Shell Method Use the shell method when the axis of revolution is perpendicular to the axis containing the natural interval of integration. Instead of summing volumes of thin slices, we sum volumes of thin cylindrical shells that grow outward from the axis of revolution. 4.The region bounded by the curve y =, the x-axis, and the line x = 4 is revolved about the x-axis to generate a solid. Find the volume of the solid.

Example Finding Volumes Using Cylindrical Shells 5.The region bounded by the curve y =, y = x, and x = 0 is revolved about the y-axis to form a solid. Use cylindrical shells to find the volume of the solid.

Example Other Cross Sections 6.A solid is made so that its base is the shape of the region between the x-axis and one arch of the curve y = 2 sin x. Each cross section cut perpendicular to the x-axis is a semicircle whose diameter runs from the x-axis to the curve. Find the volume of the solid. Radius of the semicircle is

Pg. 251, 4.6 #1-35 odd

Quick Quiz Sections