UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 1 A M odular D esign for a P arallel M ultifrontal M esh G enerator J.P. Boufflet, P. Breitkopf, C. Longeau,

Slides:



Advertisements
Similar presentations
Automatic Photo Pop-up Derek Hoiem Alexei A.Efros Martial Hebert Carnegie Mellon University.
Advertisements

Parameterizing a Geometry using the COMSOL Moving Mesh Feature
1 Numerical Simulation for Flow in 3D Highly Heterogeneous Fractured Media H. Mustapha J. Erhel J.R. De Dreuzy H. Mustapha INRIA, SIAM Juin 2005.
GRAPP, Lisbon, February 2009 University of Ioannina Skeleton-based Rigid Skinning for Character Animation Andreas Vasilakis and Ioannis Fudos Department.
Developable Surface Fitting to Point Clouds Martin Peternell Computer Aided Geometric Design 21(2004) Reporter: Xingwang Zhang June 19, 2005.
Designing Tensile Structures Using Generic CAD Applications. Structural membranes 2007, Barcelona, September 2007 Javier Sánchez, Tecnun, University.
1 A component mode synthesis method for 3D cell by cell calculation using the mixed dual finite element solver MINOS P. Guérin, A.M. Baudron, J.J. Lautard.
Chapter 17 Design Analysis using Inventor Stress Analysis Module
1 Computer Graphics Chapter 7 3D Object Modeling.
CAD Import, Partitioning & Meshing J.Cugnoni LMAF / EPFL 2009.
CISC October Goals for today: Foster’s parallel algorithm design –Partitioning –Task dependency graph Granularity Concurrency Collective communication.
Isoparametric Elements
CSE351/ IT351 Modeling And Simulation Choosing a Mesh Model Dr. Jim Holten.
Parallel Decomposition-based Contact Response Fehmi Cirak California Institute of Technology.
Filling Arbitrary Holes in Finite Element Models 17 th International Meshing Roundtable 2008 Schilling, Bidmon, Sommer, and Ertl.
OBBTree: A Hierarchical Structure for Rapid Interference Detection Gottschalk, M. C. Lin and D. ManochaM. C. LinD. Manocha Department of Computer Science,
Tracking Video Objects in Cluttered Background
1 Efficient Placement and Dispatch of Sensors in a Wireless Sensor Network Prof. Yu-Chee Tseng Department of Computer Science National Chiao-Tung University.
Identification of Domains using Structural Data Niranjan Nagarajan Department of Computer Science Cornell University.
Boğaziçi University Artificial Intelligence Lab. Artificial Intelligence Laboratory Department of Computer Engineering Boğaziçi University Techniques for.
Quadtrees and Mesh Generation Student Lecture in course MATH/CSC 870 Philipp Richter Thursday, April 19 th, 2007.
CSE 681 Ray Tracing Implicit Surfaces. CSE 681 Overview Similar to CSG –Combine primitive objects to form complex object Primitives are “density fields”
Finite Element Study of Structural Discontinuities Presented By: Ike Lee and Nick Lin Project Advisor: Ioannis Korkolis.
Hubert CARDOTJY- RAMELRashid-Jalal QURESHI Université François Rabelais de Tours, Laboratoire d'Informatique 64, Avenue Jean Portalis, TOURS – France.
1CPSD NSF/DARPA OPAAL Adaptive Parallelization Strategies using Data-driven Objects Laxmikant Kale First Annual Review October 1999, Iowa City.
March 12, 2008 A Parallel Algorithm for Optimization-Based Smoothing of Unstructured 3-D Meshes by Vincent C. Betro.
Engineering Mechanics: Statics
Dobrina Boltcheva, Mariette Yvinec, Jean-Daniel Boissonnat INRIA – Sophia Antipolis, France 1. Initialization Use the.
Finite element modeling of the electric field for geophysical application Trofimuk Institute of Petroleum Geology and Geophysics SB RAS Shtabel Nadezhda,
Computer Vision Lecture 5. Clustering: Why and How.
11 July 2002 Reverse Engineering 1 Dr. Gábor Renner Geometric Modelling Laboratory, Computer and Automation Research Institute.
1 Surface Applications Fitting Manifold Surfaces To 3D Point Clouds, Cindy Grimm, David Laidlaw and Joseph Crisco. Journal of Biomechanical Engineering,
© Fluent Inc. 10/14/ Introductory GAMBIT Notes GAMBIT v2.0 Jan 2002 Fluent User Services Center Volume Meshing and the Sizing.
Clustering Spatial Data Using Random Walk David Harel and Yehuda Koren KDD 2001.
Discontinuous Galerkin Methods and Strand Mesh Generation
The Geometry of Biomolecular Solvation 2. Electrostatics Patrice Koehl Computer Science and Genome Center
Natural Elements Method for Shallow Water Equations
Application Paradigms: Unstructured Grids CS433 Spring 2001 Laxmikant Kale.
Materials Process Design and Control Laboratory Finite Element Modeling of the Deformation of 3D Polycrystals Including the Effect of Grain Size Wei Li.
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
Managing the Level of Detail in 3D Shape Reconstruction and Representation Leila De Floriani, Paola Magillo Department of Computer and Information Sciences.
Visual Computing Geometric Modelling 1 INFO410 & INFO350 S2 2015
Ale with Mixed Elements 10 – 14 September 2007 Ale with Mixed Elements Ale with Mixed Elements C. Aymard, J. Flament, J.P. Perlat.
Finite Element Analysis
Geometric Modeling for Shape Classes Amitabha Mukerjee Dept of Computer Science IIT Kanpur
Vertices, Edges and Faces By Jordan Diamond. Vertices In geometry, a vertices is a special kind of point which describes the corners or intersections.
Quadtrees: Non-Uniform Mesh Generation Universidad de Puerto Rico – Mayagüez Mathematics Department Computational Geometric Course Course Professor: Robert.
Domain Decomposition in High-Level Parallelizaton of PDE codes Xing Cai University of Oslo.
A Production Scheduling Problem Using Genetic Algorithm Presented by: Ken Johnson R. Knosala, T. Wal Silesian Technical University, Konarskiego Gliwice,
CS 484 Load Balancing. Goal: All processors working all the time Efficiency of 1 Distribute the load (work) to meet the goal Two types of load balancing.
Domain decomposition in parallel computing Ashok Srinivasan Florida State University.
Data Structures and Algorithms in Parallel Computing Lecture 7.
BOĞAZİÇİ UNIVERSITY – COMPUTER ENGINEERING Mehmet Balman Computer Engineering, Boğaziçi University Parallel Tetrahedral Mesh Refinement.
October 25, 2007 P_HUGG and P_OPT: An Overview of Parallel Hierarchical Cartesian Mesh Generation and Optimization- based Smoothing Presented at NASA Langley,
MULTIFUNCTIONAL COLLABORATIVE MODELING AND ANALYSIS METHODS IN ENGINEERING SCIENCE Jonathan B. Ransom NASA Langley Research Center Mail Stop 240, Hampton,
8.1 The Rectangular Coordinate System and Circles Part 2: Circles.
1 Rocket Science using Charm++ at CSAR Orion Sky Lawlor 2003/10/21.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Sheng-Hsuan Wang Author : Sanghamitra.
An Approach to Automated Decomposition of Volumetric Mesh Chuhua Xian, Shuming Gao and Tianming Zhang Zhejiang University.
CAD Import Partitioning & Meshing
Hybrid Parallel Implementation of The DG Method Advanced Computing Department/ CAAM 03/03/2016 N. Chaabane, B. Riviere, H. Calandra, M. Sekachev, S. Hamlaoui.
1 Spherical manifolds for hierarchical surface modeling Cindy Grimm.
Xing Cai University of Oslo
Range Image Segmentation for Modeling and Object Detection in Urban Scenes Cecilia Chen & Ioannis Stamos Computer Science Department Graduate Center, Hunter.
POSTPROCESSING Review analysis results and evaluate the performance
SOLID MODELLING.
Craig Schroeder October 26, 2004
POSTPROCESSING Review analysis results and evaluate the performance
Scale-Space Representation for Matching of 3D Models
Presentation transcript:

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 1 A M odular D esign for a P arallel M ultifrontal M esh G enerator J.P. Boufflet, P. Breitkopf, C. Longeau, A. Rassineux, P. Villon Université de Technologie de Compiègne UMR CNRS 6599 HeuDiaSyC (department of computer science) UMR CNRS 6066 Roberval (department of computational mechanics)

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 2 Parallel volume mesh generator: parallelize a mesh generation code decompose the data Re-use of an existing sequential volume mesh generator Two strategies are possible:

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 3 The sequential volume mesh generator used the initial data: a triangular surface mesh needs a closed envelope generates the internal tetrahedrons less initial data than generated data

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 4 Splitting of a closed envelope (1) based on a Moving Least Square technique updating the cutting plane  position and direction by using an attenuation function only the points « close enough » to the current cutting plane  are taken into account balance the number of surface node 

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 5 Splitting of a closed envelope (2) We obtain a cutting plane  splitting the initial triangular surface mesh into two parts having roughly the same number of nodes 

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 6 geometric decomposition Triangular surface mesh (the domain envelope) Module 1

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 7 Interface mesh generation (1) define the interface surface nodes close to  with this boundary area define a border line C project the surface nodes of C to  generate a surface mesh using this geometry with a standard 2D mesh generator fit this new surface mesh to initials coordinates of the interface surface nodes

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 8 Interface mesh generation (2) define the interface surface nodes close to  (1) We obtain two open subdomains and a boundary area near the cutting plane    S 1 the triangular finite elements on one side of  S 2 the triangular finite elements on the other side of  S 3 the triangular finite elements near  distance criterion the boundary area

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 9 Interface mesh generation (3) define the interface surface nodes close to  (2) We assign the triangular finite elements of the boundary area  “crown”

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 10 Interface mesh generation (4) define the interface surface nodes close to  (3) That defines a border line C composed of interface surface nodes splitting the initial triangular surface mesh into two open subdomains C 

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 11 Interface mesh generation (4) project the surface nodes of C to  generate a surface mesh using this geometry with a standard 2D mesh generator We obtain a new plane surface mesh

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 12 Interface mesh generation (5) fit this new surface mesh to the initial coordinates of the interface surface nodes Merge this new surface mesh with the two open subdomains By restoring the initial coordinates of the surface nodes of C

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 13 Interface mesh generation (6) We obtain two new triangular surface meshes corresponding to two closed envelopes compatible with the sequential volume mesh generator used

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 14 geometric decomposition interface mesh generator Triangular surface mesh (the domain envelope) Module 2

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 15 Sequential volume mesh generator We apply the sequential volume mesh generator on each closed envelope of each subdomain We obtain two volume meshes

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 16 geometric decomposition interface mesh generator sequential volume mesh generator Triangular surface mesh (the domain envelope) Module 3

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 17 Volume mesh merging The interface surface mesh is the same

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 18 geometric decomposition 3D volume mesh interface mesh generator sequential volume mesh generator volume mesh merging Triangular surface mesh (the domain envelope) Module 4

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 19

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 20

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 21

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 22

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 23

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 24

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 25

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 26

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 27

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 28

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 29

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 30 geometric decomposition 3D volume mesh interface mesh generator sequential volume mesh generator volume mesh merging scheduler Triangular surface mesh (the domain envelope) n=2 h Module 5

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 31 Complex geometry

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 32 Complex geometry

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 33 Complex geometry

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 34 More complex geometry Multiple contour Contour with hole inside we know where is the material detection of the connected components re-assigning strategy for small parts (intersection with 

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 35 re-assigning strategy for small parts

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 36 Two examples of interface mesh generated with two different 

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 37 geometric decomposition 3D volume mesh interface mesh generator sequential volume mesh generator volume mesh merging scheduler Triangular surface mesh (the domain envelope)

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 38 Conclusion the preliminary results have to be confirmed on other benchmarks the results have to be compared with the meshes computed with the sequential volume mesh generator alone several issues have to be addressed : piloting strategy for the cutting plane  according to the attenuation function and the shape of the initial surface mesh the behavior of each module has to be studied

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 39 Future works design of the scheduler coupling the parallel volume mesh generation with a solver

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 40 Questions ?

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 41 Clue (1.0) piloting strategy for the cutting plane  according to the attenuation function and the shape of the initial surface mesh X the first center of gravity  the first cutting plane material Two boundary areas  the first normal vector

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 42 Clue (1.1) We compute the weight: w i =w ref (distance(h(X i ),X)/r) Where : h(X i ) is the projection of surface node X i to the normal of  r is a radius (area of influence) w ref (d) is an attenuation function where : w ref (d) = 0.5 (1+cos(  d)) if d  [0,1] and 0 otherwise

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 43 Clue (1.2) detect the two boundary area for each, compute a new center of gravity for each boundary area, adjust a new quantity r according to each local geometry run the partitioning algorithm on each part

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 44 Clue (1.3) X1X1     X2X2 r1r1 r2r2

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 45 Clue (1.4) X1X1       X2X2 r1r1 r2r2