Chapter 18 Environmental Hazards and Human Health Amazon Crude - CBS News Video.

Slides:



Advertisements
Similar presentations
Environmental Hazards and Human Health
Advertisements

Environmental Hazards and Human Health
Environmental Hazards and Human Health
Chap 18 Environmental Hazards & Human Heath
Risk Toxicology, and Human Health
Paracelsus “The dose makes the poison ”. MSDS Environmental Hazards and Human Health Chapter 17.
ENVIRONMENTAL SCIENCE 13e CHAPTER 14: Environmental Hazards and Human Health.
Environmental Hazards and Human Health
RISK, TOXICOLOGY, AND HUMAN HEALTH. 1. What do you think is the single biggest threat to your life? 2. What do you think is the single biggest threat.
Chapter 18 Environmental Hazards and Human Health.
Environmental Hazards and Human Health Chapter 17.
Updates Online: Weblinks See the latest Weblinks for this chapter online or click highlighted articles below (weblinks subject to change) latest Weblinks.
APES Get out Ecological Footprint Assignment. Chapter 17 Environmental Hazards & Human Health.
Chapter 14 Environmental Hazards & Human Health
Environmental Hazards and Human Health By Brittney Jones
Biological Hazards Disease in Developed and Developing Countries.
Risk, Toxicology, and Human Health G. Tyler Miller, Jr.’s Environmental Science 10 th Edition Chapter 10 G. Tyler Miller, Jr.’s Environmental Science 10.
Chapter 17 Human Health and Environmental Risks
Chapter 18 Environmental Hazards and Human Health.
Environmental Hazards and Human Health
Risk, Toxicology, and Human Health
Chapter 17 Managing Risk In the 21 st Century Environmental Hazards and Human Health.
Chapter 18 Environmental Hazards and Human Health.
Risk, Toxicology, and Human Health Brian Kaestner Saint Mary’s Hall Brian Kaestner Saint Mary’s Hall Thanks to Miller and Clements.
KATHY HUANG & KERRY WALSH Chapter 17: Environmental Hazards and Human Health.
Chapter 17 Human Health and Environmental Risks. What is Risk? Risk: possibility of suffering harm from a hazard.
What risks do these pollutants pose to us? To determine this we need to understand the following.
Chapter 17: Environmental Hazards and Human Health
Brainstorm all the possible pollutants that might affect human health
Chapter 18 Environmental Hazards and Human Health.
Environmental Hazards & Human Health
Environmental Hazards and Human Health Chapter 17.
Chapter 11 – Sect to 11-5 Hazards and Risk Assessment.
Chapter 11 Environmental Hazards and Human Health.
Chapter 17 Environmental Hazards and Human Health.
Environmental Hazards & Human Health Chapter 18. Risk The probability, or likelihood, that a harmful consequence will occur as the result of exposure.
Page 1 Unit 7 Environmental hazards and human health- (ch 17)
Environmental Hazards and Human Health, Part 1. CHEMICAL HAZARDS A hazardous chemical can harm humans or other animals because it may: –Be flammable –Be.
Risk, Toxicology, and Human Health
Chapter 17 Hazards and Risks. Questions for Today What is Risk and how do we handle Risk? What is a Hazard? What is Toxicology? What affects Toxicity?
Chapter 15.1 Links Between Human Health and the Environment emerging diseases (avian flu, SARS, Ebola) appear as we continue to manipulate the natural.
Risk, Toxicology, and Human Health
Chapter 17 Environmental Hazards & Human Health
Chapter 18 Section 01. Core Case Study: The Global HIV/AIDS Epidemic According to the World Health Organization (WHO), in 2005 about 42 million people.
CHAPTER 10: RISK, TOXICOLOGY AND HUMAN HEALTH
Toxicology Toxicology—measure of how armful a substance is – Potential harm is dependent on Dosage Bioaccumulation—some molecules are absorbed & stored.
Environmental Hazards and Human Health Chapter 17.
Chapter 17 Biological and Chemical Hazards. Questions for Today What are the different Biological Hazards we come in contact with? What are some major.
TEST WEDNESDAY Toxicology PoisonStudy of Study of toxic (harmful) substances on organisms, including their nature, effects, detection, methods of treatment,
Environmental Hazards and Human Health Chapter 17.
Environmental Hazards and Human Health. Are Baby Bottles & Food Cans Safe To Use? 1.Some synthetic chemicals act as hormone mimics and disrupt the human.
Chapter 17 Managing Risk In the 21 st Century Environmental Hazards and Human Health.
Chapter 18 Environmental Hazards and Human Health.
Chapter 19 Environmental Hazards and Human Health Tar Creek Tar Creek.
Risk, Toxicology & Human Health Chapter 10. I. Risk A.The probability of hazard (injury, disease, economic or environmental damage B. Risk Assessment.
1 Chapter 18 Environmental Hazards and Human Health.
Chapter 18 Environmental Hazards and Human Health.
Environmental Hazards and Human Health
Environmental Hazards and Human Health
Environmental Hazards and Human Health
ENVIRONMENTAL SCIENCE IN ENGINEERING
Unit 9: Environmental Health and Toxicology
Environmental Health 9 CHAPTER
Environmental Hazards and Human Health
Environmental Hazards and Human Health
Environmental Hazards and Human Health
Environmental Hazards and Human Health
Apes Ch 11 Risk, Toxicology, and Human Healthy
Risk, Toxicology, and Human Health
ENVIRONMENTAL SCIENCE
Presentation transcript:

Chapter 18 Environmental Hazards and Human Health Amazon Crude - CBS News Video

Core Case Study: The Global HIV/AIDS Epidemic AIDS has reduced the life expectancy of sub-Saharan Africa from 62 to 47 years – 40 years in the seven countries most severely affected by AIDS. Projected age structure of Botswana's population in Figure 18-2

Core Case Study: The Global HIV/AIDS Epidemic The virus itself is not deadly, but it cripples the immune system, leaving the body susceptible to infections such as Kaposi’s sarcoma (above). Figure 18-1

RISKS AND HAZARDS Risk is a measure of the likelihood that you will suffer harm from a hazard. We can suffer from: –Biological hazards: from more than 1,400 pathogens. –Chemical hazards: in air, water, soil, and food. –Physical hazards: such as fire, earthquake, volcanic eruption… –Cultural hazards: such as smoking, poor diet, unsafe sex, drugs, unsafe working conditions, and poverty.

Transmissible Disease Pathway for infectious disease in humans. Figure 18-4

Fig. 18-4, p. 420 Pets Livestock Wild animals MosquitoesFood Water Air Fetus and babies Other humansHumans

Transmissible Disease WHO estimates that each year the world’s seven deadliest infections kill 13.6 million people – most of them the poor in developing countries. Figure 18-5

Case Study: Growing Germ Resistance to Antibiotics Rabidly producing infectious bacteria are becoming genetically resistant to widely used antibiotics due to: –Genetic resistance: Spread of bacteria around the globe by humans, overuse of pesticides which produce pesticide resistant insects that carry bacteria. –Overuse of antibiotics: A 2000 study found that half of the antibiotics used to treat humans were prescribed unnecessarily.

Case Study: The Growing Global Threat from Tuberculosis The highly infectious tuberculosis (TB) kills 1.7 million people per year and could kill 25 million people 2020.

Viral Diseases Flu, HIV, and hepatitis B viruses infect and kill many more people each year then highly publicized West Nile and SARS viruses. –The influenza virus is the biggest killer virus worldwide. Pigs, chickens, ducks, and geese are the major reservoirs of flu. As they move from one species to another, they can mutate and exchange genetic material with other viruses.

Case Study: Malaria – Death by Mosquito Malaria kills about 2 million people per year and has probably killed more than all of the wars ever fought. Figure 18-7

Fig. 18-7, p. 423 Female mosquito bites infected human, ingesting blood that contains Plasmodium gametocytes Merozoites enter bloodstream and develop into gametocytes causing malaria and making infected person a new reservoir Plasmodium develop in mosquito Sporozoites penetrate liver and develop into merozoites Female mosquito injects Plasmodium sporozoites into human host.

Spraying insides of homes with low concentrations of the pesticide DDT greatly reduces the number of malaria cases. –Under international treaty enacted in 2002, DDT is being phased out in developing countries. Case Study: Malaria – Death by Mosquito

Fig. 18-8, p. 424 Solutions Infectious Diseases Increase research on tropical diseases and vaccines Reduce poverty Decrease malnutrition Improve drinking water quality Reduce unnecessary use of antibiotics Educate people to take all of an antibiotic prescription Reduce antibiotic use to promote livestock growth Careful hand washing by all medical personnel Immunize children against major viral diseases Oral rehydration for diarrhea victims Global campaign to reduce HIV/AIDS

CHEMICAL HAZARDS A toxic chemical can cause temporary or permanent harm or death. –Mutagens are chemicals or forms of radiation that cause or increase the frequency of mutations in DNA. –Teratogens are chemicals that cause harm or birth defects to a fetus or embryo. –Carcinogens are chemicals or types of radiation that can cause or promote cancer.

Effects of Chemicals on the Immune, Nervous, and Endocrine Systems Long-term exposure to some chemicals at low doses may disrupt the body’s: –Immune system: specialized cells and tissues that protect the body against disease and harmful substances. –Nervous system: brain, spinal cord, and peripheral nerves. –Endocrine system: complex network of glands that release minute amounts of hormones into the bloodstream.

Effects of Chemicals on the Immune, Nervous, and Endocrine Systems Molecules of certain synthetic chemicals have shapes similar to those of natural hormones and can adversely affect the endocrine system. Figure 18-9

Fig. 18-9, p. 427 Hormone Estrogenlike chemical Antiandrogen chemical Receptor Normal Hormone ProcessHormone MimicHormone Blocker Cell

Case Study: A Black Day in Bhopal, India The world’s worst industrial accident occurred in 1984 at a pesticide plant in Bhopal, India. –An explosion at Union Carbide pesticide plant in an underground storage tank released a large quantity of highly toxic methyl isocyanate (MIC) gas. –15,000-22,000 people died –Indian officials claim that simple upgrades could have prevented the tragedy.

TOXICOLOGY: ASSESSING CHEMICAL HAZARDS Factors determining the harm caused by exposure to a chemical include: –The amount of exposure (dose). –The frequency of exposure. –The person who is exposed. –The effectiveness of the body’s detoxification systems. –One’s genetic makeup.

Dose-response curve w/ LD-50

TOXICOLOGY: ASSESSING CHEMICAL HAZARDS Children are more susceptible to the effects of toxic substances because: –Children breathe more air, drink more water, and eat more food per unit of body weight than adults. –They are exposed to toxins when they put their fingers or other objects in their mouths. –Children usually have less well-developed immune systems and detoxification processes than adults.

TOXICOLOGY: ASSESSING CHEMICAL HAZARDS Under existing laws, most chemicals are considered innocent until proven guilty, and estimating their toxicity is difficult, uncertain, and expensive. –Federal and state governments do not regulate about 99.5% of the commercially used chemicals in the U.S.

RISK ANALYSIS Scientists have developed ways to evaluate and compare risks, decide how much risk is acceptable, and find affordable ways to reduce it. Figure 18-12

Fig , p. 433 Comparative Risk Analysis Most Serious Ecological and Health Problems High-Risk Health Problems Indoor air pollution Outdoor air pollution Worker chemical exposure Pollutants in drinking water Pesticide residues on food Toxic chemicals in consumer products High-Risk Ecological Problems Global climate change Stratospheric ozone depletion Wildlife habitat alteration & destruction Species extinction, loss of biodiversity Medium-Risk Ecological Problems Acid deposition Pesticides Airborne toxic chemicals Toxic chemicals, nutrients, and sediment in surface waters Low-Risk Ecological Problems Oil spills Groundwater pollution Radioactive isotopes Acid runoff to surface waters Thermal pollution

RISK ANALYSIS Estimating risks from using many technologies is difficult due to unpredictability of human behavior, chance, and sabotage. Reliability of a system is multiplicative: –If a nuclear power plant is 95% reliable and human reliability is 75%, then the overall reliability is (0.95 X 0.75 = 0.71) 71%.

RISK ANALYSIS Annual deaths in the U.S. from tobacco use and other causes in Figure 18-A

Fig. 18-A, p. 435 Cause of DeathDeaths Tobacco use 442,000 Accidents 101,500 (43,450 auto) Alcohol use 85,000 Infectious diseases 75,000 (16,000 from AIDS) Pollutants/ toxins 55,000 Suicides 30,600 Homicides 20,622 Illegal drug use 17,000

RISK ANALYSIS Number of deaths per year in the world from various causes. Parentheses show deaths in terms of the number of fully loaded 400-passenger jumbo jets crashing every day of the year with no survivors. Figure 18-13

Fig , p. 435 Cause of deathAnnual deaths Poverty/malnutrition/ disease cycle 11 million (75) Tobacco 5 million (34) Pneumonia and flu 3.2 million (22) Air pollution 3 million (21) HIV/AIDS Malaria 2 million (14) Diarrhea 1.9 million (13) Tuberculosis 1.7 million (12) Car accidents 1.2 million (8) Work-related injury & disease 1.1 million (8) Hepatitis B 1 million (7) Measles 800,000 (5) 3 million (21)

Perceiving Risk Most individuals evaluate the relative risk they face based on: –Degree of control. –Fear of unknown. –Whether we voluntarily take the risk. –Whether risk is catastrophic. –Unfair distribution of risk. Sometimes misleading information, denial, and irrational fears can cloud judgment.

RISK ANALYSIS Comparisons of risks people face expressed in terms of shorter average life span. Figure 18-14

Fig , p. 436 Shortens average life span in the U.S. byHazard Poverty Born male Smoking Overweight (35%) Unmarried 5 years Overweight (15%) 2 years Spouse smoking 1 year Driving 7 months Air pollution 5 months Alcohol 5 months Drug abuse 4 months Flu 4 months AIDS 3 months Drowning 1 month Pesticides 1 month Fire 1 month Natural radiation 8 days Medical X rays 5 days Oral contraceptives 5 days Toxic waste 4 days Flying 1 day Hurricanes, tornadoes 1 day Lifetime near nuclear plant 10 hours 6 years 6–10 years 7.5 years 7–10 years

Becoming Better at Risk Analysis We can carefully evaluate or tune out of the barrage of bad news covered in the media, compare risks, and concentrate on reducing personal risks over which we have some control. Figure 18-3

Fig. 18-3, p. 419 Risk AssessmentRisk Management Hazard identificationComparative risk analysis What is the hazard?How does it compare with other risks? How much should it be reduced? Risk reduction Probability of risk How likely is the event? Risk reduction strategy How will the risk be reduced? Consequences of risk Financial commitment What is the likely damage? How much money should be spent?