P UNTOS I NVARIANTES Eutéctico (funde fácil): L -> S1 + S2 Peritéctico (funde alrededor): S1 + L -> S2 Monotéctico: L1 -> L2 + S Peritectoide: S1 + S2 -> S3 Eutectoide: S1 -> S2 + S3 Punto de Fusión Congruente: L -> S Punto de Transformación Congruente: S1 -> S2
E JEMPLO : C U - S N 1. Peritéctico: L+Cu -> 2. Peritéctico: L+ -> 3. PTE -> 4. Eutectoide: -> Cu 5. Eutectoide: -> + Cu Peritéctico: L+ -> A 300 °C y una composición de 50% Sn, ¿cuáles son las fases presentes y en qué cantidades?
Reacción Peritéctica: L+δ -> γ Reacción Eutéctica: L -> γ+Fe 3 C
Phase equilibria in the Fe-C system + Fe 3 C + + Fe 3 C 912 T(ºC) 727 wt% C Fe 3 C A1A1 A3A3 A cm What type of invariant reaction is this? Eutectoid
Nucleation and growth C1C1 Let’s consider the cooling of a single phase austenite through the intercritical regime.
C1C1 Nucleation and growth Let’s consider the cooling of a single phase austenite through the intercritical regime.
C1C1 Nucleation and growth Let’s consider the cooling of a single phase austenite through the intercritical regime.
C1C1 Nucleation and growth Let’s consider the cooling of a single phase austenite through the intercritical regime.
C1C1 Nucleation and growth Let’s consider the cooling of a single phase austenite through the intercritical regime.
C1C1 Nucleation and growth Let’s consider the cooling of a single phase austenite through the intercritical regime.
C1C1 Nucleation and growth Let’s consider the cooling of a single phase austenite through the intercritical regime.
C1C1 Nucleation and growth Now we examine a similar case for a higher carbon content.
C1C1 Nucleation and growth Now we examine a similar case for a higher carbon content.
+Fe 3 C C1C1 Nucleation and growth Now we examine a similar case for a higher carbon content. When we cross the A1, the remaining austenite transforms to a two-phase product of and Fe 3 C, known as pearlite.
Resulting Microstructures Ferrite Pearlite
Eutectoid transformation The pearlite reaction in Fe-C-alloys Eutectoid transformation at 0,8% C: