Surface Aging by Impacts E. Paquette 1,2, P. Poulin 1, G. Drettakis 2 1 Université de Montréal 2 iMAGIS/GRAVIR-REVES-INRIA.

Slides:



Advertisements
Similar presentations
Example-Based Fractured Appearance L. Glondu, L. Muguercia, M. Marchal, C. Bosch, H. Rushmeier, G. Dumont and G. Drettakis.
Advertisements

Real-Time Dynamic Wrinkles Caroline Larboulette Marie-Paule Cani GRAVIR Lab, Grenoble, France.
Procedural and interactive icicle modeling Jonathan Gagnon Eric Paquette.
Interactive Rendering using the Render Cache Bruce Walter, George Drettakis iMAGIS*-GRAVIR/IMAG-INRIA Steven Parker University of Utah *iMAGIS is a joint.
1 Université de Montréal 2 INRIA Sophia Antipolis The Simulation of Paint Cracking and Peeling E. Paquette 1,2, P. Poulin 1, G. Drettakis 2.
Extended Gaussian Images
Real-Time Rendering POLYGONAL TECHNIQUES Lecture 05 Marina Gavrilova.
I MAGIS is a joint project of CNRS - INPG - INRIA - UJF iMAGIS-GRAVIR / IMAG Painting folds using expansion textures Jean Combaz Fabrice Neyret
A Painting Interface for Interactive Surface Deformations Jason Lawrence Thomas Funkhouser Princeton University.
MATHIEU GAUTHIER PIERRE POULIN LIGUM, DEPT. I.R.O. UNIVERSITÉ DE MONTRÉAL GRAPHICS INTERFACE 2009 Preserving Sharp Edges in Geometry Images.
Smoothing 3D Meshes using Markov Random Fields
Computing 3D Geometry Directly From Range Images Sarah F. Frisken and Ronald N. Perry Mitsubishi Electric Research Laboratories.
Shape from Contours and Multiple Stereo A Hierarchical, Mesh-Based Approach Hendrik Kück, Wolfgang Heidrich, Christian Vogelgsang.
Computer Graphics Lab Electrical Engineering, Technion, Israel June 2009 [1] [1] Xuemiao Xu, Animating Animal Motion From Still, Siggraph 2008.
1 Displaced Subdivision Surfaces Aaron Lee Princeton University Henry Moreton Nvidia Hugues Hoppe Microsoft Research.
LYU0603 A Generic Real-Time Facial Expression Modelling System Supervisor: Prof. Michael R. Lyu Group Member: Cheung Ka Shun ( ) Wong Chi Kin ( )
Advanced Computer Graphics (Fall 2010) CS 283, Lecture 4: 3D Objects and Meshes Ravi Ramamoorthi
Modelling. Outline  Modelling methods  Editing models – adding detail  Polygonal models  Representing curves  Patched surfaces.
Shape Modeling International 2007 – University of Utah, School of Computing Robust Smooth Feature Extraction from Point Clouds Joel Daniels ¹ Linh Ha ¹.
Interactive Mesh Sculpting Using a Haptic Device.
Computer Modelling Of Fallen Snow Paul Fearing University of British Columbia Vancouver, Canada.
1 Simulation Modeling and Analysis Verification and Validation.
Physically-Based Simulation of Objects Represented by Surface Meshes Matthias Muller, Matthias Teschner, Markus Gross CGI 2004.
Multi-Scale Surface Descriptors Gregory Cipriano, George N. Phillips Jr., and Michael Gleicher.
Research & Innovation 1 An Industry Perspective on VVG Research Oliver Grau BBC Research & Innovation VVG SUMMER SCHOOL '07.
Modeling and representation 1 – comparative review and polygon mesh models 2.1 Introduction 2.2 Polygonal representation of three-dimensional objects 2.3.
Faking Dynamics of Cloth Animation for Animated Films Fabian Di Fiore Expertise Centre for Digital Media Hasselt University, Belgium
GIP: Computer Graphics & Image Processing 1 1 Medical Image Processing & 3D Modeling.
Dual/Primal Mesh Optimization for Polygonized Implicit Surfaces
Efficient Editing of Aged Object Textures By: Olivier Clément Jocelyn Benoit Eric Paquette Multimedia Lab.
Interactive Virtual Relighting and Remodelling of Real Scenes C. Loscos 1, MC. Frasson 1,2,G. Drettakis 1, B. Walter 1, X. Granier 1, P. Poulin 2 (1) iMAGIS*
Dynamic Meshing Using Adaptively Sampled Distance Fields
Interactive Rendering of Meso-structure Surface Details using Semi-transparent 3D Textures Vision, Modeling, Visualization Erlangen, Germany November 16-18,
Exploitation of 3D Video Technologies Takashi Matsuyama Graduate School of Informatics, Kyoto University 12 th International Conference on Informatics.
Interactive surface reconstruction on triangle meshes with subdivision surfaces Matthias Bein Fraunhofer-Institut für Graphische Datenverarbeitung IGD.
Interactively Modeling with Photogrammetry Pierre Poulin Mathieu Ouimet Marie-Claude Frasson Dép. Informatique et recherche opérationnelle Université de.
Adaptively Sampled Distance Fields Representing Shape for Computer Graphics Ronald N. Perry and Sarah F. Frisken Mitsubishi Electric Research Laboratories.
Image-based Rendering. © 2002 James K. Hahn2 Image-based Rendering Usually based on 2-D imagesUsually based on 2-D images Pre-calculationPre-calculation.
Image Synthesis Rabie A. Ramadan, PhD 1. 2 About my self Rabie A. Ramadan My website and publications
Volumetric Data April 6, Visible Human Creation of complete, anatomically detailed, three-dimensional representations of the normal male and female.
MIRALab Where Research means Creativity SVG Open 2005 University of Geneva 1 Converting 3D Facial Animation with Gouraud shaded SVG A method.
Images Similarity by Relative Dynamic Programming M. Sc. thesis by Ady Ecker Supervisor: prof. Shimon Ullman.
Extraction and remeshing of ellipsoidal representations from mesh data Patricio Simari Karan Singh.
Efficient Streaming of 3D Scenes with Complex Geometry and Complex Lighting Romain Pacanowski and M. Raynaud X. Granier P. Reuter C. Schlick P. Poulin.
- Laboratoire d'InfoRmatique en Image et Systèmes d'information
University of Montreal & iMAGIS A Light Hierarchy for Fast Rendering of Scenes with Many Lights E. Paquette, P. Poulin, and G. Drettakis.
NPar Non-linear Perspective Widgets for Creating Multiple-View Images Nisha Sudarsanam (Mindjet Corp) Cindy Grimm (Washington Univ. in St. Louis)
JinJin Hong, Lixia Yan, Jiaoying Shi (State Key Lab. of CAD&CG, Zhejiang University) A Tetrahedron Based Volume Model Simplification Algorithm.
Beyond Bouncing Boxes Fast, yet still Realistic, Deformation and Fracture Jeff Lander Darwin 3D, LLC Luxoflux James O'Brien U. of California, Berkeley.
Computer-Generated Medical, Technical, and Scientific Illustration SIGGRAPH 2005 Course #31 Half-Day, Tuesday, 2 August, 8:30 am - 12:15 pm Level: Intermediate.
High Resolution Surface Reconstruction from Overlapping Multiple-Views
Enhancing Image-Based Aging Approaches Olivier Clément Eric Paquette.
Romain Pacanowski INRIA Bordeaux University Xavier GranierChristophe SchlickPierre Poulin.
Fast Global Illumination Including Specular Effects Xavier Granier 1 George Drettakis 1 Bruce J. Walter 2 1 iMAGIS -GRAVIR/IMAG-INRIA iMAGIS is a joint.
Outline ● Introduction – What is the problem ● Generate stochastic textures ● Improve realism ● High level approach - Don't just jump into details – Why.
DPL3/10/2016 CS 551/651: Simplification Continued David Luebke
Modeling The process of creating 3D Objects
APE'07 IV INTERNATIONAL CONFERENCE ON ADVANCES IN PRODUCTION ENGINEERING June 2007 Warsaw, Poland M. Nowakiewicz, J. Porter-Sobieraj Faculty of.
CIRP Annals - Manufacturing Technology 60 (2011) 1–4 Augmented assembly technologies based on 3D bare-hand interaction S.K. Ong (2)*, Z.B. Wang Mechanical.
Image-Guided Fracture David Mould University of Saskatchewan.
3D Reconstruction Based on 3D/2D Registration Longwei Fang 29/1/2016.
ERC Expressive Seminar
Games Development Practices 3D Modelling
3D Modeling & Animation Software
Mesh Modelling With Curve Analogies
Mesh Modelling With Curve Analogies
Motivation Skeleton needed for mesh deformation:
Work Features Work features are tools that help create and position features by providing points, lines, and planes when current geometry is not sufficient.
Work Features Work features are tools that help create and position features by providing points, lines, and planes when current geometry is not sufficient.
Presentation transcript:

Surface Aging by Impacts E. Paquette 1,2, P. Poulin 1, G. Drettakis 2 1 Université de Montréal 2 iMAGIS/GRAVIR-REVES-INRIA

GI 2001 Université de Montréal iMAGIS Context Realistic rendering Synthetic objects look too perfect Aging effects

GI 2001 Université de Montréal iMAGIS Previous Work Specific effects –Dirt & dust [Miller94, Hsu95] –Sculpting & tracks [Wang95, Sumner98] –Weathering [Dorsey96b, Dorsey99] –Corrosion [Dorsey96a, Merillou01] –Cracks & fracture [Hirota98, O’Brien99] –Scratches [Merillou01]

GI 2001 Université de Montréal iMAGIS Previous Work Specific effects –Dirt & dust [Miller94, Hsu95] –Sculpting & tracks [Wang95, Sumner98] –Weathering [Dorsey96b, Dorsey99] –Corrosion [Dorsey96a, Merillou01] –Cracks & fracture [Hirota98, O’Brien99] –Scratches [Merillou01]

GI 2001 Université de Montréal iMAGIS Previous Work Specific effects –Dirt & dust [Miller94, Hsu95] –Sculpting & tracks [Wang95, Sumner98] –Weathering [Dorsey96b, Dorsey99] –Corrosion [Dorsey96a, Merillou01] –Cracks & fracture [Hirota98, O’Brien99] –Scratches [Merillou01]

GI 2001 Université de Montréal iMAGIS Previous Work Imperfection systems [Becket90, Wong97]

GI 2001 Université de Montréal iMAGIS Impacts Impacts on surface –Scratches –Abrasion –Compaction

GI 2001 Université de Montréal iMAGIS Compaction Surface compressed Many impacts Empirical simulation

GI 2001 Université de Montréal iMAGIS Real Examples

GI 2001 Université de Montréal iMAGIS Motivation Empirical simulation –Simplicity –Efficiency –User interaction

GI 2001 Université de Montréal iMAGIS Outline Overview Inputs Simulation Results Conclusion

GI 2001 Université de Montréal iMAGIS Overview user parameters tools original object aged object intersectdeform refine

GI 2001 Université de Montréal iMAGIS Original Object Mesh –Common representation –Triangle mesh

GI 2001 Université de Montréal iMAGIS User Interface Tools –size Object deformation –compaction volume Impacts –location –direction

GI 2001 Université de Montréal iMAGIS Simulation Intersection Refinement Deformation user parameters tools original object aged object intersectdeform refine

GI 2001 Université de Montréal iMAGIS Intersection tool path object intersected faces

GI 2001 Université de Montréal iMAGIS Tool Footprint Footprint of tool on object Sharp edges (curvature) Perpendicular edges (to the path) Tools

GI 2001 Université de Montréal iMAGIS Tool Footprint Footprint of tool on object Sharp edges (curvature) Perpendicular edges (to the path) Less refinement More refinement Tools

GI 2001 Université de Montréal iMAGIS Tool Footprint Footprint of tool on object Sharp edges (curvature) Perpendicular edges (to the path) Less refinement More refinement tool path Tools

GI 2001 Université de Montréal iMAGIS Feature Points Distribute feature points Tool edges –curvature (difference of normals) –perpendicular to path –length wrt user feature size –jittering

GI 2001 Université de Montréal iMAGIS Feature Points Points representing required refinement tool path path parallel path perpendicular border (curvature)

GI 2001 Université de Montréal iMAGIS Mesh Refinement Project feature points Refine if nb > threshold tool impact

GI 2001 Université de Montréal iMAGIS Mesh Refinement Quaternary subdivision Restriction and anchoring –avoid T-vertices subdivide restrict anchor

GI 2001 Université de Montréal iMAGIS Problem: Folding Try to avoid surface folding tool object folded surface

GI 2001 Université de Montréal iMAGIS Problem: Self-intersection Try to avoid self-intersection object self- intersects

GI 2001 Université de Montréal iMAGIS Deformation Direction Constrain surface movement Reduce self-intersections and folding deformation directions

GI 2001 Université de Montréal iMAGIS Deformation Steps object vertex

GI 2001 Université de Montréal iMAGIS Deformation Steps

GI 2001 Université de Montréal iMAGIS Deformation Steps

GI 2001 Université de Montréal iMAGIS Deformation Steps projected feature points tool

GI 2001 Université de Montréal iMAGIS Deformation Steps

GI 2001 Université de Montréal iMAGIS Deformation Steps

GI 2001 Université de Montréal iMAGIS Deformation Steps

GI 2001 Université de Montréal iMAGIS Deformation Steps project along deformation direction on copy

GI 2001 Université de Montréal iMAGIS Deformation Steps deformed surface

GI 2001 Université de Montréal iMAGIS Output Aged object Recompute normals N?

GI 2001 Université de Montréal iMAGIS Normals Weighted average N =  w i N i weight ~ face subtended angle N N0N0 N5N5 N1N1 N4N4 N2N2 N3N3

GI 2001 Université de Montréal iMAGIS Output 3D viewer Save –Render with any standard renderer (we use Maya)

GI 2001 Université de Montréal iMAGIS Video

GI 2001 Université de Montréal iMAGIS Target Real Images Real photographs as goals trunk

GI 2001 Université de Montréal iMAGIS Target Real Images stairsdoor

GI 2001 Université de Montréal iMAGIS Target Real Images metal plate door & frame

GI 2001 Université de Montréal iMAGIS User Interaction Trial and error –tools –tool size –compaction volume –impact location and direction 30 minutes to 2 hours user time per object

GI 2001 Université de Montréal iMAGIS Synthetic Aged Trunk realagedclean

GI 2001 Université de Montréal iMAGIS Synthetic Aged Door realagedclean

GI 2001 Université de Montréal iMAGIS Synthetic Aged Door realaged

GI 2001 Université de Montréal iMAGIS Synthetic Aged Door Frame realagedclean

GI 2001 Université de Montréal iMAGIS Synthetic Aged Stairs realagedclean

GI 2001 Université de Montréal iMAGIS Synthetic Aged Stairs realaged

GI 2001 Université de Montréal iMAGIS Synthetic Aged Metal Plate realagedclean

GI 2001 Université de Montréal iMAGIS Simulation Statistics StairsTrunkFramePlateDoor Impacts Total (seconds) 4.13s4.78s7.59s6.17s8.54s Average (milliseconds) 32ms 25ms26ms31ms Athlon 600 MHz Linux PC

GI 2001 Université de Montréal iMAGIS Simulation Statistics Mesh size StairsTrunkFramePlateDoor original6 k2 k35221 k final22 k18 k23 k20 k25 k regular k80000 k11000 k16000 k32000 k

GI 2001 Université de Montréal iMAGIS Rendering Time SGI Onyx 4 x R4400, 200 MHz

GI 2001 Université de Montréal iMAGIS Conclusion Increased realism Adaptive refinement Reduced –folding –self-intersection Simple & Efficient Intuitive & easy to use

GI 2001 Université de Montréal iMAGIS Future Work Surface –refinement, representation Impacts specification –from possible results –extraction from images Other effects –pealing, abrasion, scratches, dirt

GI 2001 Université de Montréal iMAGIS Acknowledgments Grants & scholarships –FCAR, NSERC, MRI-MEQ Rendering software –Alias|Wavefront iMAGIS is a joint project of CNRS/INRIA/UJF/INPG