Powder Technology DT275 Masters in Pharmaceutical and Chemical Process Technology Gavin Duffy, School of Electrical Engineering Systems, DIT.

Slides:



Advertisements
Similar presentations
Motion of particles trough fluids part 2
Advertisements

FLOW measurements.
PM3125: Lectures 19 to 21 Content of Lecture 21:
Week # 10 MR Chapter 8 Tutorial #10 MR #8.1, 8.2. To be discussed on March 25, By either volunteer or class list. MARTIN RHODES (2008) Introduction.
Aero-Hydrodynamic Characteristics
Pneumatic transport Basic definition – using gas to transport a particulate solid through a pipeline –Ex: grain, flour, plastic, pulverized coal Two modes.
Powder Technology – Part II DT275 Masters in Pharmaceutical and Chemical Process Technology Gavin Duffy, School of Electrical Engineering Systems, DIT.
Heating and Air Conditioning I
Motion of particles trough fluids part 2
COMMERCIAL REFRIGERATION
Downstream Processing Short Course May 2007 Kevin Street Gavin Duffy
Chapter 9 Solids and Fluids (c).
What gas velocities are required? For particles larger than 100  m –Wen&Yu correlation Re mf =33.7[(1+3.59*10 -5 Ar) ] –Valid for spheres in the.
Centrifugation Downstream Processing Short Course Kevin Street May 2007 Gavin Duffy.
Flow Produced Noise & Fluid Mechanical Treatment Flow Produced Noise & Fluid Mechanical Treatment Prepared By: Eng. Ashraf Al-Shalalfeh Mechanical Engineering.
Particle Size Analysis
Principles of Liquid Flow through Pipelines
Fluid mechanics 3.1 – key points
KICK-OFF MEETING - Brindisi 21 July 2011 EcoPlasBrick WP2 Industrialization activities Development of an automated production system Start-up of a new.
Properties, Handling and Mixing of Particulate Solids
C ONVEYORS By SidraJabeen Department of Chemical Engineering, University of Engineering & Technology Lahore.
Fixed and Fluidized Beds
Experimental Study of Graphite Dust Generated from Fuel Pebble Elements of HTRs Zhou Hongbo 1, Shen Ke 1, Yu Suyuan 2* Institute of Nuclear and New Energy.
Principles of Carburetion
E Construction Surveying HYDRAULICS. Introduction surveyors –usually not be directly involved in the design of hydraulics systems –most certainly.
Pneumatic Transfer – A Natural Phenomenon
Chapter 4 Forces and Newton’s Laws of Motion Why things move the way the do.
Forces and Free-Body Diagrams
Physical Properties of Matter
Sedimentation.
Fluid Resistance.
SUBJECT CODE NAME OF SUBJECT TOPIC :::::: FLUID POWER ENGINEERING CENTRIFUGAL PUMP Parul Institute of Engineering & Technology.
Properties, Handling and Mixing of Particulate Solids By Sidra Jabeen Department of Chemical Engineering, University of Engineering & Technology Lahore.
AIR FLOW IN DUCTS Shaharin Anwar Sulaiman
Molecular Kinetic Theory
FLOW THROUGH GRANULAR BEDS AND PACKED COLUMN
Chapter 4.2 Notes Resistance in Fluids. When one solid object slides against another, a force of friction opposes the motion. When one solid object.
4. Properties of Materials Sediment (size) Physical States of Soil Concepts of Stress and Strain Normal and Shear Stress Additional Resistance Components.
Physics Section 4.4 Describe various types of forces Weight is a measure of the gravitational force exerted on an object. It depends upon the objects.
Milling II Dr. Myasr Alkotaji.
Accumulator : A robot mechanism designed to pick up a large number of similar objects.
GOVERNMENT ENGINEERING COLLEGE, BHARUCH (014) Chemical Engineering department SEM-iii Sub: fluid flow operation topic: orifice meter & rotAmeter Guid by:
Handling, Moisture Management, and Storage of Biological Products.
FLUID FOW FOR CHEMICAL ENGINEERING
Physics Section 4.4 Describe various types of forces Weight is a measure of the gravitational force exerted on an object. It depends upon the objects.
Fluid Mechanics for Chemical Engineers Arif Hussain (Lecturer)
. Government Engineering College Bharuch GROUP : 5 TAILOR HARDIK ( ) MORSIYA JENISH ( ) VANZA DIVYESH ( ) CHEMICAL DEPARTMENT.
Chapter 6 technology institute of HAVC from usst INDUSTRIAL VENTILATION TUTORIAL 王丽慧.
Sorbent Handling Plant by NHI-Design & Equipment Specifications
CENTIFUGAL PUMP OPERATION
CYCLONE SEPARATOR.
Types of material handling equipment
FLOW IN FLUIDIZED BEDS Fluidization refers to those gas-solids and liquid-solids system in which the solid phase is subjected to behave more or less like.
Troubleshooting a 556m Long Sand Slurry Pipeline
Chemical Engineering Department
Forces.
Basics of Seed Conditioning
SEDIMENTATION 9/11/2018.
Combined Cycles Using Coal & Other Solid Fuels
Chapter 4. Analysis of Flows in Pipes
MECHANICAL OPERATION IN CHEMICAL ENGINEERING
Filtration Reading Materials:
Off-Road Equipment Management TSM 262: Spring 2016
SCORPIO ENGINEERING BMH PVT. LTD.
(Fluid-Particles Systems)
Mechanical Separation
Flow properties of pharmaceutical particles
The Kinetic theory Pressure
Fluids are Affected by Forces, Pressure and Heat
Presentation transcript:

Powder Technology DT275 Masters in Pharmaceutical and Chemical Process Technology Gavin Duffy, School of Electrical Engineering Systems, DIT

Learning Outcomes After this lecture you should be able to List the main characteristics of solid particles Describe how powders can be stored List a number of methods of conveying particles Design a pneumatic conveying system Explain some particle size reduction techniques Describe how powders can be mixed

A Particle Particles have many different shapes so how do we define size? Simplest shape is the sphere – same from all directions Particle shape can be characterised by comparing it to a sphere in one of two ways: 1. Sphericity is given as  = surface area of sphere of same volume as particle surface area of particle 2. Equivalent diameter is the diameter of a sphere of equivalent volume

Sphericity Sphericity given by What is the sphericity of a cylinder? 10mm vp= volume of packing element (m3) Dp = characteristic length (diameter of cylinder) of element (m2) sp = surface area of packing element (m)

Particle Size Analysis – Sieves Sieves are metal dishes with woven mesh at base 100 mm to 20 m Finer sieves are not woven but electo etched nickel Sieves are stacked with widest aperture mesh first Pan at base Vibrate for a time Empty each sieve and weigh Each result is a size range -600 +500 fell through 600 but stayed on the 500 m sieve

Other methods Microscopic analysis (1 to 100m) Sedimentation and elutriation (> 1 m) Permeability methods (>1 m) Electronic particle counters Laser diffraction analysers For example the Focused Beam Reflectance Measurement (see http://www.lasentec.com/) Particle sizes from 0.5 m to 3 mm

Bulk Properties Compared to fluids, particulate solids are more difficult to store and convey. Some problems are: Voidage exists, this is the fraction of total volume made up of free space Agglomeration can occur, particles adhere to each other to form clusters (e.g. due to electrostatic forces, moisture) Angle of repose is between the horizontal and the sloping side of a conical pile of material 20º for free flowing solids 60º for poor flowing solids Low angle of repose for large particles (>100m) More of a problem with fines

Categories of Cohesion Powders can classified into six categories as follows (source = Pneumatic Conveyors for Bulk Materials, Gericke): Product can be suspended in air and flows as freely as a liquid; Free flowing product, angle of repose, a, being such that 0 < a £ 30° Product flows normally, angle of repose, a, being such that 30° < a £ 45° Product is slow flowing, angle of repose, a, being such that 45° < a £ 60° Compact product, angle of repose, a, being greater than 60° Non-collapsible product, entangled, susceptible to arching, resistant to separation In general, materials that fall into 5 and 6 are not suitable for gravity conveying

Other properties Hardness – measured on the Mohs’ scale. Graphite = 1 and Diamond = 10 Toughness – resistance to the propagation of cracks A tough material resists cracking, will deform plastically instead Opposite is brittle Can sometimes make tough material brittle by reducing temperature Cohesivity – degree to which particles stick together Related to moisture content and particle size Decrease size or increase moisture => more cohesive Bulk density = mass of particles/volume incl. voidage ε = Voidage ρB = bulk or bed density ρP = particle density

Particle Terminal Velocity Terminal velocity is determined by using a chart of drag coefficient v particle Reynolds number

CD v Re Chart

Calculate UT Calculate the terminal velocity for aspirin particle in assignment Calculate: Then assume two different values of Rep and calculate CD Draw this line on the chart above to get Rep at a particular sphericity Get UT from: d = particle diameter ρf = fluid density ρp = particle density g = acceleration due to gravity μ = fluid viscosity UT = terminal velocity

Storage of Solids Main types are as follows: Hoppers Intermediate Bulk Containers (IBC) Big Bag (FIBC)

Hoppers A hopper is a straight walled vessel of circular or square cross section with a tapered (conical or tapered square section) base It is filled at the top and must be vented for both filling and emptying Discharge is from the base, usually controlled by a sliding knife valve, butterfly valve or rotary valve Bridging can occur above the discharge Hopper can be vibrated externally or aerated to encourage flow Angle of sloping sides  angle of repose. A more scientific approach is given in Ch 8, Introduction to Particle Technology, M Rhodes. Aeration can be through a sintered metal membrane on the conical end and this is fluidised with low pressure air to assist flow (< 0.5 bar) Hoppers are often pressure rated (e.g. 10barg) to contain explosions

Mass and Core flow from a Hopper Core flow occurs when only material in the centre flows from the hopper All the powder in the hopper is in motion with Mass flow

Weighing a hopper A hopper is weighed using load cells Normally 3 load cells per hopper to create the three legged stool effect Electronics condition each of the three signals into one reading Weight can be tared on a regular basis All connections to hopper must be flexible to ensure support and weight rests on the load cells alone Flexible connections must take pressure rating if applicable

Hopper Weighing Load Cell Three supports

Conveying solids Simplest is gravity feed – factory must be tall (must think about planning permission!) Pneumatic conveying – particles are transported in a stream of air Pulled through with a fan at the far end Pushed through with compressed air/nitrogen Pulled through with compressed air (eductor/ejector) Removed from conveying fluid at end with a cyclone Mechanical conveying – widely used in mineral processing Screw conveyors – large range of sizes, small enough for pharmachem Belt conveyors etc.

Dilute Phase Pneumatic Conveying A pneumatic conveying system typically consists of the following: A blower/vacuum pump at the start or end of the line pushes or pulls air and material to/from the unloading station through the system Material is separated from air at the end by a cyclone Solids fall out of cyclone A dust collector is installed downstream of the cyclone to collect fine particles A Supply System has the blower at the start pushing air An Exhaust System has the blower at the end pulling air

Activity – Pneumatic Conveying Have a go at designing a pneumatic conveying system Material is unloaded from an IBC on the ground floor and conveyed to a hopper on the top floor A blower is used to pull the air through the system A dust collector is also needed to catch any fines missed by the cyclone Use straight lines for pipes Cross off each piece or equipment and instrumentation as you use it You should not be left with anything at the end!

Conveying Velocities Rules of thumb for design velocities for gases and dusts are as follows: 5 to 6 m/s for vapours and gases 10 to 13 m/s for very fine light dusts 20 to 23 m/s for heavy dusts These velocities are normally sufficient to prevent settling of dusts in pipework

Designing ducting networks There are four methods of designing ducting networks (ref. Fan Handbook, FP Bleier) Static regain Equal friction per unit length of duct Velocity reduction Constant velocity This method uses a constant duct diameter to supply an equal volume of air to several branches Mainly applicable to HVAC

Equal Friction and Velocity Reduction Calculates duct diameters and air velocities based on equal friction per 30m/100ft of duct length Suitable for systems of moderate velocity (1000 to 2000 fpm, 5 to 10 m/s) Symmetrical branch layout Velocity reduction Assume a velocity at the start Calculate the reduction in velocity through the system Duct area and pressure drop are then calculated using these velocities Suitable for asymmetric systems with branches of different lengths

Constant Velocity Method Suitable for pneumatic conveying where high duct velocities are needed to keep material entrained Minimise velocity to minimise head loss due to friction and attrition of particles, but velocity must be sufficient to entrain material Duct diameters and pressure drops are calculated based on the velocity required to prevent settling (3000 to 7000 fpm, 15 to 35 m/s) Total pressure drop is then determined – this must be overcome by the static head generated by the fan See worked example taken from ‘Introduction to Particle Technology’ by Martin Rhodes

Design Considerations Use long radius bends to minimise pressure drop Pipe size should be a minimum of 10 times the particle diameter Vertical rise should be at the start of the piperun

Pneumatic Conveying system Pharma grade polished Stainless steel

Gravity feed Material is dropped from one vessel into another Number of steps/unit operations depends on the height of the building At the ground floor, material is stored in an IBC and transported by lift to the top for further processing Amount of material discharged by gravity is controlled based on weight loss or weight gain Butterfly valve or Rotary valve between stages to control the flow Load cells on hoppers/vessels to know when they’re full or empty

Gravity feed control Butterfly valve with inflatable seal on the disc helps containment of dust Rotary valve driven by a motor for a fixed time/speed M

Case Study – Gravity Feed of Toner Toner is a marginally free flowing powder with an angle of repose of between 30 and 60° depending on the process step – pre classifier is 30° and classified (fine) is 60° It falls into category of cohesion number 2 to 4 Experience showed an angle of 70° to be the best Successful gravity feed is achieved using 8” pipelines Incline of no less than 70° to the horizontal For pipes (implications for equipment location) And for hopper conical ends Assist discharge from hoppers/IBCs using fluidising air at a low pressure (<0.5 bar)

Case study cont. For inclined lines < 70° flow is assisted by gentle aeration Flow through rotary valves should not be throttled by reducers, i.e. 8” line for a 8” valve Pneumatic conveying is done by vacuum so leakage is prevented Tall building to allow gravity feed through process steps – this has implications for planning permission Dust collectors contained in a canyon to absorb noise to keep noise at site boundary within limit

Intermediate Bulk Container An IBC is a mobile hopper moved by pallet/fork truck Volume usually about 1m3, stainless steel Not pressure rated Can store material that is WIP waiting for further processing Conical base can have sintered membrane for fluidising air Filled at top and placed on an IBC discharge station for emptying. Vented when filling Base of IBC has one half of a split butterfly valve Other half of valve is on the discharge station Valve can only open when two halves are joined Valve must be closed before separation IBC can be weighed using a platform weighing scale

IBC - Pictures IBC unloading station IBC

Split Butterfly Valve Allows contained discharge of dry powders during transfer

Big Bag Flexible IBC (FIBC) Large bag, 1m3 Placed in a modified IBC before filling Large loops at each corner for lifting Emptied through a big bag discharge station Manual process where bag is untied through a glove box Neck of bag connected to short length of pipe and flow controlled by a butterfly valve Vibrated during discharge

Big bag filling

Big bag discharge

End of Part I