A CsI(Tl) Dark Matter Search Experiment - KIMS -

Slides:



Advertisements
Similar presentations
Dante Nakazawa with Prof. Juan Collar
Advertisements

Status of XMASS experiment Shigetaka Moriyama Institute for Cosmic Ray Research, University of Tokyo For the XMASS collaboration September 10 th, 2013.
DMSAG 14/8/06 Mark Boulay Towards Dark Matter with DEAP at SNOLAB Mark Boulay Canada Research Chair in Particle Astrophysics Queen’s University DEAP-1:
Jung il LEE for KIMS collaboration Sejong University
Status of Ultra-low Energy HPGe Detector for low-mass WIMP search Li Xin (Tsinghua University) KIMS collaboration Oct.22nd, 2005.
th KPS meeting 1 WIMP Search with CsI(Tl) Crystals – Status and Future The Future of Dark Matter Detection Y.D. Kim ( KIMS collaboration )
S. Zuberi, University of Rochester Digital Signal Processing of Scintillator Pulses Saba Zuberi, Wojtek Skulski, Frank Wolfs University of Rochester.
Yang Yang Underground Lab in Korea (Y2L) Li Jin IHEP/ Tsinghua Beijing, China OCPA 2008, HongKong.
For the KIMS Collaboration
Status of WIMP search in KIMS experiment Kwak, Jungwon ( KIMS Collaboration ) The dark Side of the Universe KIAS-APCTP-DMRC Workshop in KIAS.
APPI 2002, HongJoo Kim, Feb 15/2002 Dark Matter Search with CsI crystal APPI2002 Feb 15/2002 HongJoo Kim, Yonsei University. Introduction Characteristics.
TAUP2007, Sendai, 12/09/2007 Vitaly Kudryavtsev 1 Limits on WIMP nuclear recoils from ZEPLIN-II data Vitaly A. Kudryavtsev Department of Physics and Astronomy.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Annual Modulation Study of Dark Matter Using CsI(Tl) Crystals In KIMS Experiment J.H. Choi (Seoul National University) SUSY2012, Beijing.
WIMP Search with CsI(Tl) Crystals at KIMS Sun Kee Kim Seoul National University For the KIMS Collaboration IDM 2006, Rhodes.
암흑물질 탐색을 위한 CsI 섬광검출기의 특성시험 - CsI 결정제작과정의 Cs 화합물의 방사능 측정 -
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
Recent status of dark matter search with ULE-HPGe detector Tsinghua University Qian Yue nd Korea-China Joint Seminar on Dark Matter Search.
A WIMP dark matter search with CsI(Tl) crystal SeungCheon Kim Department of Physics & Astronomy Seoul National University 1 ( )
Dark Matter Search with CsI(Tl) crystal scintillators : KIMS
A study on CaMoO4 crystal coupled with LAAPD for neutrinoless double beta decay Sejong University Jung il LEE LEE J.I., BHANG H.C.1, CHOI J.H.1, KIM S.C.1,
Neutron Monitoring Detector in KIMS Jungwon Kwak Seoul National University 2003 October 25 th KPS meeting.
DEAP Part I: Andrew Hime (Los Alamos National Laboratory) DEAP Concept DEAP-0 Test-Results & Requirements of a DEAP Program Synergy with CLEAN Program.
Ultra-low background HPGe detector at ChyeongPyung Underground Laboratory TaeYeon Kim and KIMS(Korea Invisible Mass Search) Collaboration. * Contents *
Internal background of CsI(Tl) crystal detectors for dark matter search Tae Yeon Kim Seoul National University For the KIMS Collaboration Seoul National.
Iwha Womans University 2005/04/22 Hyunsu Lee & Jungwon Kwak Current Limit of WIMP search with CsI(Tl) crystal in KIMS 이현수 *, 곽정원, 김상열, 김선기, 김승천,
The Recent Status of KIMS Group and New Plan Li Xin (Tsinghua University) KIMS collaboration Aug. 28th, 2006.
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A High-Pressure, Room- Temperature, Gaseous-Neon-Based Underground.
A Study of Background Particles for the Implementation of a Neutron Veto into SuperCDMS Johanna-Laina Fischer 1, Dr. Lauren Hsu 2 1 Physics and Space Sciences.
1 IDM2004 Edinburgh, 9 september 2004 Helenia Menghetti Bologna University and INFN Study of the muon-induced neutron background with the LVD detector.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
KPS Chonbuk University 2005/10/22 HYUNSU LEE Status of the KIMS dark matter search experiment with CsI(Tl) crystals Hyun Su Lee Seoul National.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
Muon flux at Y2L and reconstruction of muon tracks
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
Status of KIMS Sun Kee Kim Seoul National University For the KIMS Collaboration Workshop on Undeground Experiments and Astroparticle Physics Feb. 16, 2005.
Status of KIMS Sun Kee Kim Seoul National University For the KIMS Collaboration KPS meeting, Oct. 22, 2004.
? At Yangyang beach, looking for something in the swamp of particles and waves. 1 The recent results from KIMS Seung Cheon Kim (Seoul National University)
ZEPLIN I: First limits on nuclear recoil events Vitaly A. Kudryavtsev Department of Physics and Astronomy University of Sheffield, UK For the UK Dark Matter.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
KIMS Seoul National University Juhee Lee 1 KPS in Changwon.
DARK MATTER SEARCH Carter Hall, University of Maryland.
CsI crystal for WIMP Search Sun Kee Kim Seoul National University For the KIMS Collaboration Seoul National Univ. : J.M.Choi, R.K.Jain, S.C.Kim, S.K.Kim*,
Research Program and Status of KIMS Sun Kee Kim Seoul National University Yongpyung, Jan. 29, 2004.
SrCl 2 crystal for EC/  + search Presented by J.H. So (KNU)
CsI Veto Detector Performance Study He Dao DMRC. Tsinghua University For KIMS Collaboration.
PyungChang 2006/02/06 HYUNSU LEE CsI(Tl) crystals for WIMP search Hyun Su Lee Seoul National University (For The KIMS Collaboration)
A simulation study on DBD search with pilot setup AMoRE - SNU jilee.
Progress of CsI(Na) Dark Matter Searches Experiment Xilei Sun IHEP On behalf of CINDMS group Roma, IHEP-INFN Meeting
Seoul National University Han-wool Ju CUNPA Kick-off Meeting Aug.22-23, 2013.
The analysis status of WIMP search at KIMS Seung Cheon Kim (DMRC,SNU) yongpyung workshop 2010.
CaMoO 4 at low temperature - LAAPD and PMTs - Woonku Kang, Jungil Lee, Eunju Jeon, Kyungju Ma, Yeongduk Kim Sejong University for KIMS collaboration Double.
09/04/2006NDM061 CANDLES for the study of 48 Ca double beta decay OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
WIMPs Direct Search with Dual Light-emitting Crystals Xilei Sun IHEP International Symposium on Neutrino Physics and Beyond
Status of ULE-HPGe Experiment for WIMP Search in YangYang
Fast neutron flux measurement in CJPL
On behalf of TEXONO collaboration
Double Beta Decay Experiment with CaMoO4 crystal
R&D status & possible configuration of the 1st round experiment
Muon and Neutron detector of KIMS experiment
Sr-84 0n EC/b+ decay search with SrCl2 crystal
Mo-92 EC/beta+ search with CaMoO4 crystal at Y2L
CsI Compton Veto Detector for A low Mass WIMP Experiment
• • • Ge measurements for SuperNEMO
Status of Neutron flux Analysis in KIMS experiment
Study of Muon-induced Neutrons in the KIMS Experiment
Characterization of Large CaMoO4 crystals for 0n bb search
WIMP Dark Matter Search
Presentation transcript:

A CsI(Tl) Dark Matter Search Experiment - KIMS - Korean Invisible Mass Search Yeongduk Kim Sejong University, Seoul, Korea IDM 2002 meeting, 2002. Sep 5

Collaborators Seoul National Univ. : J.M.Choi, R.K.Jain, S.C.Kim, S.K.Kim*, T.Y.Kim, H.S. Lee, S.E. Lee, H..Park, H.Y.Yang, M.S.Yang Sejong Univ. : W.K.Kang, J.I. Lee, D.S.Lim, Y.D.Kim, Yonsei Univ. : J.Hwang, H.J.Kim, Y.J.Kwon Iwha Womans Univ. : I.S.Han, E.K.Lee, I.H. Park SeongKyunKwan Univ. : I.Yu Chonbuk National Univ. : S.Y.Choi KAIST : P.Ko Univ. of Maryland : M.H.Lee, E.S.Seo National Taiwan Univ., : H.B.Li, C.H.Tang, M.Z.Wang Academia Cinica : W.P.Lai, H.T. Wong Inst. Of High Energy Physics : J.Li, Y.Liu, Q.Yue Inst. Of Atomic Energy : B.Xin, Z.Y.Zhou Tsinghua University : J. Zhu * PI

Outline CsI(Tl) crystals Underground site Studies on background reduction Perspectives Summary

Why CsI(Tl) Crystal ? Advantage Disadvantages High light yield ~50,000/MeV Pulse shape discrimination Easy fabrication and handling High mass number(both Cs and I) SI + SD CsI(Tl) NaI(Tl) Density(g/cm3) 4.53 3.67 Decay Time(ns) ~1000 ~230 Peak emission(nm) 550 415 Hygroscopicity slight strong Disadvantages Emission spectra does not match with normal bi-alkali PMT 137Cs(t1/2 ~30y) ,134Cs(t1/2 ~2y) may be problematic

Low energy signal with CsI(Tl) 3” Green Extended RbCs PMT (Electron Tubes) Digital Oscilloscope with 10ns bin Large crystal (7x7x30cm) : ~ 4.5 p.e./keV Small crystal(3x3x3cm) : ~ 6 p.e./keV

Response of CsI(Tl) with elastically scattered neutron CsI(Na) has spurious events due to surface effect 2 keV threshold  ~ 10 keV recoil energy

Pulse shape discrimination at ~ keV energy Nuclear recoil vs gamma events Mean time for each events for each photoelectrons in an event 4<E<10 keV

Comparison of PSD power NaI(Tl) CsI(Tl) Ideal detector  ~ 1,  ~ 0 K << 1 S B S B cut

Underground Site Location : minimum 350 m underground Access tunnel(1.4km) 350m Laboratory Power plant

134Cs (artificial+133Cs(n,gamma)) 87Rb (natural) Background of CsI(Tl) 137Cs (artificial) 134Cs (artificial+133Cs(n,gamma)) 87Rb (natural) Single Crystal (~10 kg) background @ ~10keV 87Rb 0.63 cpd/1ppb HR ICP-MASS 137Cs 0.35 cpd/1mBq/kg HPGe 134Cs 0.07 cpd/1mBq/kg “ Pollucite(raw material for Cs) contains < 8 mBq/kg of 137Cs

Crystals w/o selection of CsI powder (1) 137Cs Dominating crystal 8.9 kg day data Geant 4 Simulation 137Cs 155mBq/kg 134Cs ~35mBq/kg 87Rb 3.9 ppb (ICP-MASS)

CsI(Tl) from IHEP(China) Crystals w/o selection of CsI powder (2) 87Rb Dominating crystal CsI(Tl) from IHEP(China) 137Cs 13.3mBq/kg 134Cs 54.2 mBq/kg 87Rb 203 ppb (ICP-MASS)

Selection of CsI powder from various vendors Crystals CsOH CsNO3 CsMnO4 ~ 3mBq/kg CsI Powders Small samples 137Cs ~14mBq/kg Rb ~ 21 ppb Chemetall Selected 137Cs 87Rb

Crystals with selection of CsI powder 1st Demonstration of Reducing Bacground of CsI(Tl) by selecting powder. Should reduce further. Powder  Crystal 137Cs 15.5 ± 2.6 19.8 ±2.5 mBq/kg 134Cs 27.4 ± 4.6 34.0 ± 4.4 87Rb 20.0 ppb 23.2 (?) BG(~10 keV) 20.0 cpd 21 cpd

Water Samples “Purified” “Normal” Water is main source ! “Ultra-pure” A large amount of water used for extraction Of Cs (Chemetall) Water samples with HPGe – Precipitation with AMP (Ammonium Molybdophosphate) 137Cs(“Normal water”) >> 137Cs(“Purified”) ~ 20 times “Purified” “Normal” Water is main source ! “Ultra-pure”

CsI powder with “Purified” water CsI powder with only “purified” water in a production scale. CsI powder Crystal “Normal” water  15.5 ±2.6  7 cpd (5.4 cpd expected) “Purified” water  5.3 ± 1.0  2.4 cpd(Expected) Factor 3 reduction of 137Cs with “Purified” water

Rb reduction by Recrystallization CsI solubility in water is very high. Recrystallization is done at slightly lower temperature from saturation point. 20 ppb powder  ~ 1 ppb (< 1cpd) Crystal growing by Bridgmann reduced Rb by about 25%

Summary of Internal Background Reduction W P C Crystals W/O Selection Purified Water P C Normal Water

Cosmic rays : ~ 10-4 relative to the sea level External background Cosmic rays : ~ 10-4 relative to the sea level The rock composition (ICP-MASS) 238U ~ 4.8 ppm, 232Th ~ 6 ppm, 40K ~ 4 ppm With a shielding of 15cm Pb(Boliden) + 10cm Cu(OFHC)  Can be controlled < 0.005 cpd based a MC simulation study (GEANT4)

Neutron Background at underground BC501A liquid scintillator Neutron Flux ~ 4x10-5 /cm2/sec Mainly from (alpha,n) reaction GEANT4 simulation  Can be controlled <0.001 cpd 30cm LSC (Outside Shielding) + 20cm LSC(Inside Shielding)

Shielding Structure Cosmic Muon Veto

Neutron detector inside Copper shielding Po-Be neutron source 20cm BC501A  Neutron tagging efficiency > 75%

Sensitivity (Spin-Independent) After 1 year data taking with 100 kg CsI(Tl) 2 keV threshold 3 count/(kev kg day) CDMS Limit DAMA

Summary Extensive R&D on CsI(Tl) crystal has been carried out Pulse shape discrimination from -rays Main source of 137Cs contamination due to impure water. Rb reduction down to ~1ppb achieved.  < 5cpd from internal background. Shielding capable of 250 kg of CsI(Tl) under construction. Environmental background : small enough Large (n,gamma) separable LSC inside shielding is tested. Perspectives ~100 kg CsI(Tl) crystal within 1 year 1 year data taking will cover DAMA region