Hypernuclear Spectroscopy with Heavy Ion Collisions (HypHI) The HypHI Phase 0 experiment at GSI Eunhee Kim 1,2 for HypHI collaboration 2 1 Seoul National.

Slides:



Advertisements
Similar presentations
Hypernuclei: A very quick introduction Electroproduction of hypernuclei The experimental Program at Jefferson Lab Update on the analysis of O and Be targets.
Advertisements

1. The Physics Case 2. Present Status 3. Hypersystems in pp Interactions 4. The Experiment Future Experiments on Hypernuclei and Hyperatoms _.
Take R. Saito, for the HypHI collaboration GSI-Darmstadt
The Next Generation of Hypernucleus and Hyperatom Experiments GSI, Josef Pochodzalla Univ. Mainz.
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
The AMADEUS project – precision studies of the low-energy antikaon nucleon interaction Johann Zmeskal, SMI – Vienna, Austria for the AMADEUS collaboration.
SKS Minus Detectors in detail Tohoku Univ. K.Shirotori.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
HYPERNUCLEAR PHYSICS USING CEBAF BEAM PAST AND FUTURE Liguang Tang Hampton University/JLAB 4 th Workshop on Hadron Physics In China and Opportunities with.
The Quenching of Nucleon Yields in the Nonmesonic Weak Decay of Λ Hypernuclei and the Three-body Weak Interaction Process. H. Bhang (Seoul National University)
Search for  + via K + p   + X reaction with high-resolution spectrometer system Kyoto University S. Dairaku for E559 collaboration.
Oct. 13 th ray spectroscopy study of and Yue Ma Department of Physics Tohoku University.
S.N.Nakamura, Tohoku Univ. JLab HallC Meeting 22/Jan/2010, JLab.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
ExternalTargetFacility at CSR FRIB-China East Lansing Sun, Zhiyu Institute of Modern Physics, CAS.
J-PARC での YN 相互作用の研究 東北大学理学研究科 三輪浩司. Contents Physics background YN interaction Scattering experiment, spectroscopy Past experiments of YN scattering.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
Fast Timing with Diamond Detectors Lianne Scruton.
Lambda hypernuclear spectroscopy at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS collaboration 1.Introduction.
The search for deeply bound kaonic nuclear states at J-PARC Toshihiko Hiraiwa Kyoto University On behalf of the J-PARC E15 collaboration.
Double hypernuclei at PANDA M. Agnello, F. Ferro and F. Iazzi Dipartimento di Fisica Politecnico di Torino SUMMARY  The physics of double-hypernuclei;
P10-2: Exclusive Study on the  N Weak Interaction in A=4  -Hypernuclei (update from P10) S. Ajimura (Osaka Univ.) Osaka-U, KEK, OsakaEC-U, RIKEN, Seoul-U,
Brad Sawatzky / JLAB Acknowledgements to Liguang Tang Hampton University/JLAB MESON 2012 Krakow, Poland.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
A Study with High Precision on the Electro- production of  and  -hypernuclei in the Full Mass Range Liguang Tang On behalf of the unified JLab hypernuclear.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
Hypernuclear spectroscopy using (K - stop,  0 ) and (e,e’K + ) reactions Doc. dr. sc. Darko Androić University of Zagreb Physics Department.
JLab Hypernuclear Workshop 27 th May 2014 Satoshi N Nakamura, Tohoku University HKS HES Results from Hall-C.
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
Recent Studies of Hypernuclei Formation with Electron Beams at MAMI Patrick Achenbach U Mainz Sept. 2o13.
Study of Neutron-Rich  Hypernuclei Tomokazu FUKUDA Osaka Electro-Communication University 2013/09/091EFB 22.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
Study of Electromagnetic Interactions of Light Ions in the Framework of the IHEP Ion Program at U70 Serguei Sadovsky, IHEP, Protvino EMIN-2009, Moscow,
SksMinus status Hyperball collaboration meeting 2009/3/11 K. Shirotori.
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
Study of Light Hypernuclei by Pionic Decay at JLAB Liguang Tang Other spokespersons: A. Margaryan, L. Yuan, S.N. Nakamura, J. Reinhold Collaboration: From.
Magnetic Moment of a  in a Nucleus H. Tamura Tohoku University 1. Introduction 2.  -ray spectroscopy of  hypernuclei and spin-flip B(M1) 3. Experiments.
JLab における (e,e'K + ) 反応を用い た 精密ラムダハイパー核分光実験 東北大学理学研究科 後神 利志 Toshiyuki Gogami Strangeness 2010 at KEK JLab Hall-C.
Λ hypernuclear spectroscopic experiment via (e,e’K + ) at JLab Graduate school of science, Tohoku Univ. Toshiyuki Gogami JLab Hall-C in May 2009.
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Momentum distributions of projectile residues: a new tool to investigate fundamental properties of nuclear matter M.V. Ricciardi, L. Audouin, J. Benlliure,
Study of Light  -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
Structure of light Λ hypernuclei Emiko Hiyama (RIKEN)
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 Beam line Tohoku Univ. K.Shirotori 東北大学 大学院理学研究科 白鳥昂太郎.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
重离子碰撞中的 ( 反 ) 超核研究 马余刚 中国科学院上海应用物理研究所 引言 RHIC-STAR 的超核测量 – 超氚核构建 – 寿命测量 – 奇异性因子 GSI 超核寿命测量实验简介 超核产生机制研究 关于 H 粒子寻找简介.
Simulation of Heavy Hypernuclear Lifetime Measurement For E Zhihong Ye Hampton University HKS/HES, Hall C Outline: 1,Physics 2,Detectors 3,Events.
Experimental Challenges for Hypernuclear Physics at Panda Patrick Achenbach U Mainz with contributions from the PANDA Hypernuclear groups Sept. 2o11.
2011/9/221 Koji Miwa Tohoku Univ. For the J-PARC E40 Collaboration Sigma proton scattering experiment E40.
First ExclusiveMeasurement of the Non-Mesonic Weak Deacay of 12  C First Exclusive Measurement of the Non-Mesonic Weak Deacay of 12  C Seoul national.
Seoul National University On behalf of J-PARC E18 Collaboration
Florida International University, Miami, FL
Study of Hypernuclei with Heavy Ion Beams (HypHI) at GSI Shizu Minami GSI, Germany on behalf of HypHI collaboration Introduction Phase 0 experiment R.
T. Gaitanos, H. Lenske, U. Mosel
A heavy-ion experiment at the future facility at GSI
Event Reconstruction and Data Analysis in R3BRoot Framework
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
Single trigger, no target
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
Hypernuclear spectroscopy using (K-stop,p0) and (e,e’K+) reactions
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
Presentation transcript:

Hypernuclear Spectroscopy with Heavy Ion Collisions (HypHI) The HypHI Phase 0 experiment at GSI Eunhee Kim 1,2 for HypHI collaboration 2 1 Seoul National University, 2 GSI, Germany 1 ND April2010

Hypernuclei: Laboratory for baryon-baryon interaction with hyperon  In order to understand baryon-baryon interaction under flavor SU(3), we need to investigate interactions involving nucleons and hyperons.  Information of NN(nucleon-nucleon) interactions mainly obtained from NN scattering experiments.  Lack of information on YN(hyperon-nucleon) and YY(hyperon-hyperon) interactions  Difficulties to study YN and YY interactions by reaction experiments  No hyperon target available due to short lifetime (  Y ~ s)  Impractical to produce hyperon beams with proper energy  Hypernuclei are bound nuclear system with hyperon.  Hypernuclei can be used as a micro-laboratory to study YN and YY interactions. s u d s d d s d s s s s    00 2

Interests in hypernuclear physics  Structure and decay of hypernuclei at extreme isospin  Isospin dependence of YN and YY interactions  Hypernuclear magnetic moments  Property of hyperons in nuclear medium  Hypernuclear radii  Stability of hypernuclei 3 Not possible with conventional hypernuclear spectroscopy via the (K -,  - ), (  +, K + ) and (e, e’K + ) reactions. A project of hypernuclear spectroscopy with heavy ion induced reactions on a stable target nucleus, the HypHI project. Reachable with heavy ion collisions.

HypHI project Projectile Target Hot participant zone Projectile fragment  Hypernucleus  Hypernuclear production in the HypHI project  Energy threshold ~ 1.6 GeV for  production (NN → Λ KN) - Stable heavy ion beams and RI beams with up to 2 A GeV can be achieved at GSI.  The produced hypernucleus has as large velocity as the projectile fragment.  Large Lorentz factor (  > 3) → longer lifetime → Hypernucleus in flight  A new doorway for hypernuclear spectroscopy 4

HypHI at GSI/FAIR: Concept of experiments Time-of-Flight detectors Trackers N-detector K + counter Magnet n Residues p,  K  -Hypernucleus Mesonic weak decay :  →  - p Non-mesonic weak-decay :  p → np  Produced hypernucleus close to projectile velocity  Large Lorents factor  > 3  c  ~ 20 cm at 2 A GeV target Magnet 5

Present hypernuclear landscape 6 Known hypernuclei

7 Phase 1 ( ) at GSI Proton rich hypernuclei Known hypernuclei 10 4 /week 10 3 /week Hypernuclear landscape with HypHI

8 Phase 1 ( ) at GSI Proton rich hypernnuclei Hypernuclear landscape with HypHI Known hypernuclei 10 4 /week 10 3 /week Phase 1 ( ) at GSI Proton rich hypernuclei Phase 2 (2017-) at R3B/FAIR Neutron rich hypernuclei

9 Hypernuclear landscape with HypHI Phase 1 ( ) at GSI Proton rich hypernnuclei Phase 1 ( ) at GSI Proton rich hypernuclei Phase 3 (201X-) at FAIR Hypernuclear separator Known hypernuclei 10 4 /week 10 3 /week With hypernuclear separator Magnetic moments Phase 2 (2017-) at R3B/FAIR Neutron rich hypernuclei

10 Hypernuclear landscape with HypHI Known hypernuclei 10 4 /week 10 3 /week With hypernuclear separator Magnetic moments Phase 0 experiment in 2009: Demonstrate the feasibility of precise hypernuclear spectroscopy with heavy ion beams ( 6 Li beam at 2 A GeV on 12 C target) Known hypernuclei 10 4 /week 10 3 /week With hypernuclear separator Magnetic moments Phase 1 ( ) at GSI Proton rich hypernnuclei Phase 1 ( ) at GSI Proton rich hypernuclei Phase 3 (201X-) at FAIR Hypernuclear separator Phase 2 (2017-) at R3B/FAIR Neutron rich hypernuclei

Phase 0 experiment  To demonstrate the feasibility of the experimental methods of the HypHI project with 6 Li beams at 2 A GeV by producing and identifying light hypernuclei 3  H → 3 He +  - 4  H → 4 He +  - 5  He → 4 He + p +  - ▶ Beam: 6 Li at 2 A GeV with an intensity of 5 x10 6 /s ▶ Active Target : 12 C with a thickness of 8 g/cm 2 ⊙ magnet direction (0.75 T) 3days in Aug. and 11days in Oct

ALADiN magnet 12 (0.75 T)

TOF start (Time-of-flight start) ▶ For beam particles ▶ Plastic fingers + small PMTs : 1 MHz beam rate per finger ▶ Time resolution:  ~ 200 ps 5cm 13

Scintillating fiber detectors 14 ▶ 4352 fibers with a diameter of 0.83 mm ▶ HAMAMATSU H7260KS MOD readout ▶ X and Y tracking : Position resolution: 0.46 mm (RMS) ▶ For secondary vertex trigger D. Nakajima, B. Özel-Tashenov et al., Nucl. Instr. and Meth. A 608 (2009) 287 TR0TR1 TR2 3.8cm 24.5cm 11.3cm 13.2cm 7.6cm

Drift chambers 15 24cm 14cm 120cm 90cm Small DC Big DC ▶ Wire plane: xx’vv’uu’ ▶ Drift length: 2.5mm ▶ Typical resolution(RMS): 0.30 mm ▶ Gas: Ar 70% + CO 2 30% ▶ Insensitive in beam region by wrapping seinse wires with teflon ▶ Wire plane: XX’YY’U ▶ Drift length: XY 4.5mm, U 9.0mm ▶ Typical resolution(RMS): XY 0.30 mm, U 0.40mm ▶ Gas: Ar 70% + CO 2 30% ▶ Insesitive in beam region by connectiing sense and potential wires

ALADiN TOF wall 16 ▶ For  - ▶ Plastic scintillators(96 bars)+ PMTs ▶ Time resolution:  ~ 200 ps ▶ Y position calculated by the difference between top and bottom TDCs. 110cm 240cm

Big TOF wall (TFW) 17 ▶ For  - ▶ X and Y layers (18 bars + 14 bars) ▶ Time resolution:  ~ 200 ps (RMS) 150cm 188.5cm

TOF + wall 18 ▶ For  and proton ▶ Plastic scintillators (16 bars × 2 layers) with a hole for beam + PMTs ▶ Time resolution: 357±3 ps (FWHM) ▶ Energy resolution : 18 % (FWHM) 1m 96cm hole : 7.5x6.5 cm 2

Problems and improvement of Phase 0  Problems of Phase 0 experiment  Low efficiency of  - detection in ALADiN TOF wall  Many events for scattering particles from TOF+ holding structure 19 Phase 0.5 experiment ▶ Study of heavier hypernuclei ▶ Beam: 20 Ne at 2 A GeV with an intensity of 6 x10 5 /s ▶ Target : 12 C with a thickness of 8 g/cm 2 ▶ Performed in March 2010  Improvement of setup in March  Movement of ALADiN TOF wall toward behind TOF+ wall - Cross-check positively charged particles with high energy deposition  Movement of Big DC closer to Big TOF - Avoid improper operation from much high multiplicity caused by 20 Ne beam - Remove the background events from TOF+ holding structure

Phase 0.5 experiment 14 days in Mar ▶ Beam: 20 Ne at 2 A GeV with an intensity of 6 x10 5 /s to study light and heavier hypernuclei together ▶ Active Target : 12 C with a thickness of 8 g/cm 2 upstream downstream

Experimental performance  Phase 0 with 6 Li beams  Multiplicity in TR1  QDC in TOF+  Phase 0.5 with 20 Ne beams  Multiplicity in TR1  QDC in TOF+ p  Li C Ne  O p 21

People working for HypHI Phase 0/0.5  GSI Helmholtz-University Young Investigators Group VH-NG-239  S. Bianchin  O. Borodina (Mainz Univ.)  V. Bozkurt (Nigde Univ.)  B.Göküzüm (Nigde Univ.)  E. Kim (Seoul Nat. Univ)  A. Le Fevre  D. Nakajima (Tokyo Univ.)  B. Özel  C. Rappold (Strasbourg Univ.)  T.R. Saito (Spokes person)  Mainz University  P. Achenbach, J. Pochodzalla  GSI HP2 and Mainz University  F. Maas, Y. Ma  GSI HP1  W. Trautmann  GSI EE department  J. Hoffmann, K. Koch, N. Kurz, S. Minami, W. Ott, S. Voltz  GSI Detector Lab.  M. Träger, C. Schmidt  KEK  T. Takahashi, Y. Sekimoto  KVI  M. Kavatsyuk  Kyoto University  T. Nagae  Osaka University  S. Ajimura, A. Sakaguchi, K.Yoshida  Osaka Electro-Communication University  T. Fukuda, Y. Mizoi  Tohoku University  T. Koike, H.Tamura  Seoul National University  H.Bhang, K. Tanida, M.Kim, C.Yoon, S.Kim  Nigde University  S.Erturk, Z.S.Ketenci  Theoretical support  T. Gaitanos (Giessen), E. Hiyama (RIKEN), D. Lanskoy (Moscow), H. Lenske (Giessen), U. Mosel (Giessen) 22