The ion trap facility SHIPTRAP at GSI Status and Perspectives Michael Block for the SHIPTRAP collaboration.

Slides:



Advertisements
Similar presentations
Deep inelastic reactions 238 U 248 Cm primary fragments superheavy isotope 208 Pb 278 Sg fission V. Zagrebaev and W. Greiner, 2007.
Advertisements

What is the ISOLDE cooler RFQ CB - ISCOOL H. Frånberg.
Extraction efficiency and extraction times of the SHIPTRAP gas stopping cell Gleb Vorobjev for SHIPTRAP collaboration, GSI  SMI, 27. March 2006.
Hadron physics with GeV photons at SPring-8/LEPS II
Penning-Trap Mass Spectrometry for Neutrino Physics
EURISOL_DS – Task 11 Subtask 5 Neutron- and proton-induced reactions up to Fermi energy J. Äystö / V. Rubchenya JYFL, Jyväskylä (P9) / KhRI, St.Petersburg.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
JYFLTRAP: Spectroscopy with multi-trap facility Facility Mass purified beams In-trap spectroscopy Future plans.
Precision mass measurements for fundamental studies Tommi Eronen Max-Planck-Institut für Kernphysik Heidelberg, Germany.
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
Frictional Cooling Studies at Columbia University/Nevis Labs Raphael Galea, Allen Caldwell + Stefan Schlenstedt (DESY/Zeuthen) Halina Abramowitz (Tel Aviv.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
The CARIBU facility Guy Savard Argonne National Laboratory & University of Chicago ATLAS Users Meeting May
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
MATS/LaSpec Status report Alexander Herlert FAIR GmbH on behalf of the MATS and LaSpec Collaborations Thanks to W. Nörtershäuser, D. Rodríguez, P. Campell,
S. Stahl: Cryogenic Electronics in Ion Traps Part I S. Stahl, CEO Stahl-Electronics Cryogenic Electronics in Ion Traps.
Future Penning Trap Experiments at GSI / FAIR – The HITRAP and MATS Projects K. Blaum 1,2 and F. Herfurth 1 for the HITRAP and MATS Collaboration 1 GSI.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Fragmentation mechanisms for Methane induced by electron impact
Structures and shapes from ground state properties 1.Nuclear properties from laser spectroscopy 2.Status of laser measurements of moments and radii 3.New.
Collinear laser spectroscopy of 42g,mSc
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
N=126 factory Guy Savard Scientific Director of ATLAS Argonne National Laboratory & University of Chicago ATLAS Users Meeting ANL, May 15-16, 2014.
TITAN Mass Measurement of 11 Li (and other halo nuclei) Ryan Ringle, TRIUMF.
Preparation of an isomerically pure beam and future experiments Outline TAS Workshop, Caen, March 30-31, 2004 Klaus Blaum for the ISOLTRAP Collaboration.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Zoran Andjelkovic Johannes Gutenberg Universität Mainz GSI Darmstadt Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz.
Mass measurements using low energy ion beams -1- C. Thibault 31 mars 2004 Motivations to measure masses Present status Experimental methods for direct.
MR-TOF at ISOLDE Frank Wienholtz - University of Greifswald - for the ISOLTRAP Collaboration GUI –
Quadrupole collectivity in neutron-rich Cd isotopes Thorsten Kröll for the IS411/IS477/IS524 collaborations Work supported by BMBF (Nr. 06DA9036I and 05P12RDCIA),
Cryogenic ion catchers using superfluid helium and noble gases Sivaji Purushothaman KVI, University of Groningen The Netherlands.
28. November 2005 Fission product yield measurements with JYFLTRAP A novel application of a Penning trap H. Penttilä, J. Äystö, V.-V. Elomaa, T. Eronen,
Contribution of Penning trap mass spectrometry to neutrino physics Szilárd Nagy MPI-K Heidelberg, Germany New Instruments for Neutrino Relics and Mass,
RFQ cooler and buncher project for ISOLDE Present status and off-line test results Hanna Frånberg, ISOLDE.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
Masses of tripline nuclei Frank Herfurth, ISOLDE/CERN.
JRA10 Instrumentation for Precise Nuclear Measurements with Trapped Ion Techniques
TRIGA-TRAP High-precision mass measurements on neutron-rich nuclides and actinides November, 18 th Jens Ketelaer 1 Outline: Motivation Mass measurements.
Reiner Krücken Welcome to Kloster Banz. Reiner Krücken The Munich Accelerator for Fission Fragments at the FRM II in Garching Facility Overview Status.
A new RFQ cooler: concept, simulations and status Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics E. Traykov TRI  P project.
A mass-purification method for REX beams
Neutrino-related nuclear mass difference measurements with a few 10 eV uncertainty at SHIPTRAP Enrique MINAYA RAMIREZ Max-Planck-Institut für Kernphysik,
Preparation of gas-chemistry of Dubnium at IMP Z. Qin, J.S. Guo, X.L. Wu, H.J.Ding, W.X.Huang, Z.G. Gan, Institute of Modern Physics, Chinese Academy of.
Status Report of the LISOL Laser Ion Source Yu.Kudryavtsev, T.Cocolios, M.Facina, J.Gentens, M.Huyse, O.Ivanov, D.Pauwels, M.Sawicka, P.Van den Bergh,
A systematic study of  - decay of neutron-rich Rh and Ag isotopes Sixth China Japan Joint Nuclear Physics Symposium Shanghai, May 16-20, 2006 Youbao Wang.
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
Β decay of 69 Kr and 73 Sr and the rp process Bertram Blank CEN Bordeaux-Gradignan.
GAN Zaiguo Institute of Modern Physics, Chinese Academy of Sciences Alpha decay of the neutron-deficient uranium isotopes.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Review of synthesis of super heavy elements: reactions, decays and characterization. Experimental Setup of MASHA. Results of first experiments. study.
Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry
Precision Measurements of Very-Short Lived Nuclei Using an Advances Trapping System for Highly-Charged Ions q / A - selectionCooling processMass measurement.
Drift Time Spectrometer for Heaviest Elements Ludwig-Maximilians-Universität MünchenMarch 2006Mustapha Laatiaoui.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
LIST status and outlook Sven Richter for the LIST-, RILIS- and Target-Collaborations 21 st of August 2013.
TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg,
Alexander Herlert High-precision mass measurements for reliable nuclear-astrophysics calculations CERN, PH-IS NIC-IX, CERN, Geneva, June 29, 2006.
Decay scheme studies using radiochemical methods R. Tripathi, P. K. Pujari Radiochemistry Division A. K. Mohanty Nuclear Physics Division Bhabha Atomic.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
TRIGA-SPEC: Developement platform for MATS and LaSpec at FAIR Double-beta transition Q-value measurements with TRIGA-TRAP NUSTAR Meeting Christian.
Michael Dworschak, GSI for the SHIPTRAP collaboration
STATUS REPORT ON THE “MASHA” SET-UP A.M.Rodin, A.V.Belozerov, S.N.Dmitriev, Yu.Ts.Oganessian, R.N.Sagaidak, V.S.Salamatin, S.V.Stepantsov, D.V.Vanin PAC.
Precision Tests of Fundamental Interactions with Ion Trap Experiments
One way to improve first class mass ISOLTRAP
Alexander Herlert, CERN (PH-SME-IS)
Study of SHE at the GSI – SHIP
Precision Measurements of Very-Short Lived Nuclei
High-precision mass measurements of exotic nuclides:
New Transuranium Isotopes in Multinucleon Transfer Reactions
Improvement of a dc-to-pulse conversion efficiency of FRAC
Presentation transcript:

The ion trap facility SHIPTRAP at GSI Status and Perspectives Michael Block for the SHIPTRAP collaboration

Outline Introduction SHIPTRAP layout Stopping cell efficiency measurements Penning trap performance Perspectives for mass measurements Summary Outlook – FT-ICR

target wheel primary a few MeV/u fusion a few 100 keV/u detector mass measurements laser spectroscopy ion chemical reaction studies in-trap decay experiments 100 Sn SHE SHIP SHIPTRAP physics program: precision measurements with heavy ions produced at SHIP:

SHE half-lives G. Audi et al. / Nuclear Physics A 729 (2003) 3–128 Above Fm (Z=100) more than 90 nuclides have a half-life > 100ms suitable for trap experiments Fm

SHE mass precision G. Audi et al. / Nuclear Physics A 729 (2003) 3–128 only very few masses known from decay chains Z=112 N=168

The SHIPTRAP set-up Stopping Cooling Accumulation Purification Measurement

SHIPTRAP stopping cell LMU München PhD thesis J. Neumayr to buncher SHIP beam

Efficiency measurements with longitudinal extraction: Reaction: 121 Sb( 35 Cl,4n) 152 Er 152 Er: T 1/2 =10.3s, E  =4.8 MeV Test beam line at MLL-Garching Target: 260 µg/cm² Primary beam energy : 150 MeV Beam intensity:~ 4.5x10 9 s-1 Recoil energy:28.4 MeV Entrance window:Ti 4 µm / 1.8 mg/cm² efficiency for longitudinal extraction  tot = 8.4 % ± 1.5 %

Efficiency measurements with the Ortho-TOF mass spectrometer PhD thesis S. Eliseev Stopping cell and extraction RFQ efficiency for atomic ions:  tot = 4.0 % ± 1.0 % Munich beam time 08/2003 Primary beam: MeV mass resolving power up to 20,000 efficiency 1-3% vacuum problem

Stopping and extraction efficiency for perpendicular extraction 4.8% efficiency 2.7% efficiency Extraction RFQ Stopping Cell fusion products from SHIP Buncher Silicon Detector Silicon Detector  -spectrum behind extraction RFQ 152 Ho 152 Er 153 Er GSI beam time 11/2003 Reaction: 116 Sn( 40 Ar,4n) 152 Er Target: 440 µg/cm² Primary beam energy : 4.2 MeV/u Entrance window:Ti 4 µm 1.8 mg/cm²

stopping cell efficiency measurements test ionefficiencyextraction fields DC / funnel extraction MLL 152 Er  -emitter 8.4 % ± 1.5 %10 V/cm 0o0o GSI 152 Er  -emitter 4.8 % ± 0.7 %10 V/cm 5 V/cm90 o MLL 107 Ag + atomic ions 4.0 % ± 1.0 %5 V/cm 10 V/cm0o0o

Performance of the RFQ Buncher efficiency: in transmission mode: 95 % in bunched mode: 40 % cooling time: ~3 ms emittance (2.5 keV): longitudinal: 5 eV µs transversal: 20  mm mrad PhD thesis: D. Rodríguez M. Mukherjee

SHIPTRAP Penning trap system purification trapmeasurement trap PhD thesis: G. Sikler, S. Rahaman constructed in collaboration with Jyväskylä In the framework of EXOTRAPS 8-fold segmented ring electrode 8-fold segmented ring electrode correction electrodes

Penning trap performance mass resolving power > 80,000 for 133 Cs (total cycle 400ms) purification trap measurement trap mass resolving power > 850,000 for 133 Cs 133 Cs excitation time 200ms

SHIPTRAP - Current Performance ~1% efficiency 4.8% efficiency ~ 5ms extraction time access to nuclei with: production cross section ~ 1  b half-life > 100ms expected precision ~  m/m > 860,000 ~ 1s cycle time  m/m > 80,000 ~400ms cycle time 2.7% efficiency ~ 3ms cooling time

taken from S. Hofmann and G. Muenzenberg, Rev. Mod. Phys., Vol. 72, No. 3, July 2000 Perspectives on direct mass measurements of SHE cross section overall efficiency required beam time 10  b 1 %~ 0.28h 10 %~ 0.03h 1  b 1 %~ 2.8 h 10 %~ 0.28 h 100 nb1 %~ 28 h 10 %~ 2.8 h 10 nb1 %~ 11.5 d 10 %~ 28 h for a precision of using the TOF method

First mass measurements in the region A=150 G. Audi et al. / Nuclear Physics A 729 (2003) 3–128 The numbers give the mass precision in keV

half-lives

Calculated yields for Lu isotopes and A=157 isobars at SHIP Reactions: 58 Ni Pd 157 X + xnyp 58 Ni + 96 Ru A-x-1 Lu + pxn T 1/2 : 46ms 80.6ms 650ms 900ms 6.8s 115ms 10.1ms

Summary Stopping cell efficiency 5%, extraction time ~ 5ms RFQ buncher: 40% efficiency, ~ 1ms cooling time Purification trap: mass resolving power > 80,000 Measurement trap: mass resolving power > 860,000 All individual components operational and characterized: Gas cell and extraction RFQ successfully operated in beam times at GSI and MLL: Overall efficiency of the stopping cell and extraction RFQ 5% Overall efficiency including the RFQ buncher 2.7% First mass measurements can be performed in 2004

Outlook (I) - Improving the efficiency investigate loss mechanisms inside the gas cell reduce neutralization and molecule formation by impurities use higher buffer gas pressure and thinner entrance windows higher extraction fields (e.g. different funnel) change from 90 degree to longitudinal extraction optimize transfer from gas cell to Penning traps improve detection efficiency (Dali detector, channeltron) non destructive detection (FT-ICR)

Outlook (II) - FT-ICR detection

FT-ICR detection : signal-to-noise ratio for a single ion Requirements for a high sensitivity (q = 1, A ≈ 250): large ion radius small trap size high quality factor Q low temperature low capacitance

FT-ICR AT SHIPTRAP 7 T - Magnet Measurement TrapPurification Trap 4K Electronics 77K Filter Bank FFT Analyser Broad Band FFT Analyser narrow-band FT-ICR detection: highly sensitive mass spectrometry on rare nuclei broad-band FT-ICR detection: identification of the trap‘s contents study of chemical reaction kinetics 77 K S. Stahl, PhD thesis C. Weber

THE CRYOGENIC PURIFICATION TRAP

Thank you for your attention!

SHIPTRAP collaborators GSI / SHIPTRAP M. Block D. Beck F. Herfurth H.-J. Kluge C. Kozhuharov M. Mukherjee W. Quint S. Rahaman C. Rauth M. Suhonen C. Weber GSI / SHIP D. Ackermann F. P. Hessberger S. Hofmann G. Münzenberg Greifswald M. Breitenfeld G. Marx L. Schweikhard Mainz H. Backe A. Dretzke R. Horn T. Kolb W. Lauth Giessen S. Eliseev H. Geissel C. Scheidenberger M. Petrick W. Plaß Z. Wang Munich D. Habs S. Heinz J. Neumayr P. Thirolf Former PhD students J. Dilling G. Sikler D. Rodríguez

Magnetron motion: E x B drift Axial motion: oscillation in E-field Reduced cyclotron motion: Penning trap basics r 0 z 0 Ф0Ф0 B for mass measurements: