Veljko Grilj Ru đ er Bošković Institute, Zagreb, Croatia Silicon Detector Workshop Split, Croatia, 8-10 October 2012.

Slides:



Advertisements
Similar presentations
C.Manfredotti, Quartu S.Elena, WOCSDICE 2001 GaAs IBIC analysis of gallium arsenide Schottky diodes C.Manfredotti 1,2, E.Vittone 1,2,F.Fizzotti.
Advertisements

Semiconductor detectors
Solid State Detectors- 3 T. Bowcock 2 Schedule 1Position Sensors 2Principles of Operation of Solid State Detectors 3Techniques for High Performance Operation.
Trapping in silicon detectors G. Kramberger Jožef Stefan Institute, Ljubljana Slovenia G. Kramberger, Trapping in silicon detectors, Aug , 2006,
3D simulations of device performance for 3D-Trench electrode detector Jianwei Chen a,b, Hao Ding a,b, Zheng Li a,b,c, *, Shaoan Yan a,b a Xiangtan University,
New approach to simulate radiation damage to single-crystal diamonds with SILVACO TCAD Florian Kassel, Moritz Guthoff, Anne Dabrowski, Wim de Boer.
Characterization of primed state of CVD diamond by light and alpha particles C. Manfredotti Experimental Physics Department University of Torino INFN-
Paul Sellin, Radiation Imaging Group Charge Drift in partially-depleted epitaxial GaAs detectors P.J. Sellin, H. El-Abbassi, S. Rath Department of Physics.
Optical and Electrical Characterisation of Defects and Charge Transport in CdZnTe radiation detectors P.J. Sellin, S. Rath, M. Breese, A. Hossain, E.J.
Measurements on single and poly crystal diamond samples at CERN Luis Fernandez-Hernando Christoph Ilgner Alick Macpherson Alexander Oh Terry Pritchard.
Investigation of the properties of diamond radiation detectors
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
TOF at 10ps with SiGe BJT Amplifiers
FREE CARRIER ABSORPTION TECHNIQUES - MICROWAVE & IR –
On MCz SCSI after 24 GeV/c proton irradiation 12th RD50 Workshop Ljubljana, 2-4 June 2008 D. Creanza On behalf of the Bari and Pisa RD50 groups.
1Ruđer Bošković Institute, Zagreb, Croatia
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
1 Semiconductor Detectors  It may be that when this class is taught 10 years on, we may only study semiconductor detectors  In general, silicon provides.
Semiconductor detectors An introduction to semiconductor detector physics as applied to particle physics.
Techniques for determination of deep level trap parameters in irradiated silicon detectors AUTHOR: Irena Dolenc ADVISOR: prof. dr. Vladimir Cindro.
X-ray radiation damage of silicon strip detectors AGH University of Science and Technology Faculty of Physics and Applied Computer Science, Kraków, Poland.
KINETICS OF INTERSTITIAL CARBON ANNEALING AND MONITORING OF OXYGEN DISTRIBUTION IN SILICON PARTICLE DETECTORS L.F. Makarenko*, M. Moll**, F.P. Korshunov***,
RD50 Katharina Kaska1 Trento Workshop : Materials and basic measurement problems Katharina Kaska.
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
22 October 2009FCAL workshop, Geneve1 Polarization effects in the radiation damaged scCVD Diamond detectors Sergej Schuwalow, DESY Zeuthen On behalf of.
Paul Sellin, Radiation Imaging Group Charge Drift in partially-depleted epitaxial GaAs detectors P.J. Sellin, H. El-Abbassi, S. Rath Department of Physics.
Edge-TCT and Alibava measurements with pion and neutron irradiated micro-strip detectors V. Cindro 1, G. Kramberger 1, I. Mandić 1, M. Mikuž 1,2, M. Milovanović.
Laser Stripping and H 0 monitor systems 10/18/2011B.Cheymol, E. Bravin, U. Raich, F. Roncarolo BE/BI1.
Paul Sellin, Radiation Imaging Group Time-Resolved Ion Beam Induced Charge Imaging at the Surrey Microbeam P.J. Sellin 1, A. Simon 2, A. Lohstroh 1, D.
Photodetection EDIT Internal photoelectric effect in Si Band gap (T=300K) = 1.12 eV (~1100 nm) More than 1 photoelectron can be created by light in silicon.
SILICON DETECTORS PART I Characteristics on semiconductors.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
2016/6/4 Taka Kondo (KEK) 1 Issues of the SCT Digitization model 2 nd meeting of SCT Digitization TF Taka Kondo (KEK) 1.Current SCT digitization.
Evaluation of electron and hole detrapping in irradiated silicon sensors Markus Gabrysch 1, Mara Bruzzi 2, Michael Moll 1, Nicola Pacifico 3, Irena Dolenc.
Diamond Sensor Diamond Sensor for Particle Detection Maria Hempel Beam Impact Meeting Geneva,
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Analysis of Edge and Surface TCTs for Irradiated 3D Silicon Strip Detectors Graeme Stewart a, R. Bates a, C. Corral b, M. Fantoba b, G. Kramberger c, G.
Charge collection in X-ray pixel detectors based on SI-GaAs doped with Cr G.I.Ayzenshtat a, M.V.Bimatov b, O.P.Tolbanov c, A.P.Vorobiev d a Science & Production.
Effects of long term annealing in p-type strip detectors irradiated with neutrons to Φ eq =1·10 16 cm -2, investigated by Edge-TCT V. Cindro 1, G. Kramberger.
Introduction to Semiconductors
Charge Collection and Trapping in Epitaxial Silicon Detectors after Neutron-Irradiation Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner,
Division for Experimental Physics Rudjer Boskovic Institute – Zagreb, CROATIA AIDA meeting, DESY, 30/03/2012 Tome Antičić Head.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Inversion Study on MCz-n and MCz-p silicon PAD detectors irradiated with 24 GeV/c protons Nicola Pacifico Excerpt from the MSc thesis Tutors: Prof. Mauro.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
Celso Figueiredo26/10/2015 Characterization and optimization of silicon sensors for intense radiation fields Traineeship project within the PH-DT-DD section.
Status of CNM RD50 LGAD Project27th RD50 Workshop, CERN 2-4 Dec Centro Nacional del MicroelectrónicaInstituto de Microelectrónica de Barcelona Status.
Lecture 14 OUTLINE pn Junction Diodes (cont’d)
Charge Multiplication Properties in Highly Irradiated Thin Epitaxial Silicon Diodes Jörn Lange, Julian Becker, Eckhart Fretwurst, Robert Klanner, Gunnar.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
Philip Bambade, Pierre Barillon, Frédéric Bogard, Selma Conforti, Patrick Cornebise, Shan Liu, Illia Khvastunov Journée PHIL
Deep Level Transient Spectroscopy study of 3D silicon Mahfuza Ahmed.
TCT measurements with strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko Mikuž 1,2, Marko.
Picosecond timing of high energy heavy ions with semiconductor detectors Vladimir Eremin* O. Kiselev**, I Eremin*, N. Egorov***, E.Verbitskaya* * Physical-Technical.
Beam detectors in Au+Au run and future developments - Results of Aug 2012 Au+Au test – radiation damage - scCVD diamond detector with strip metalization.
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
E-TCT measurements with laser beam directed parallel to strips Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Mikuž 1,2,
Charge collection studies with irradiated CMOS detectors
Graeme Stewarta, R. Batesa, G. Pellegrinib, G. Krambergerc, M
of APS (Full Depleted FDAPS, MAPS and Hybrid Technology HPD)
大強度
Radiation Damage in Silicon
for the CARAT Collaboration Single-Crystal CVD-Diamond
Simulation of signal in irradiated silicon detectors
1. Introduction Secondary Heavy charged particle (fragment) production
Testbeam Results for GaAs and Radiation-hard Si Sensors
Vladimir Cindro, RD50 Workshop, Prague, June 26-28, 2006
CCE measurements with Epi-Si detectors
Semiconductor Detectors
Enhanced Lateral Drift (ELAD) sensors
Presentation transcript:

Veljko Grilj Ru đ er Bošković Institute, Zagreb, Croatia Silicon Detector Workshop Split, Croatia, 8-10 October 2012

1.0 MV HVE Tandetron accelerator 6.0 MV EN Tandem Van de Graaff accelerator IAEA beam line TOF ERDA PIXE/RBS Dual-beam irradiation Ion microprobe Nuclear reactions In-air PIXE PIXE crystal spectrometer Det. test. IBIC 1 2

1. Beam deflector and/or scanner 2. Pre-chamber with beam degrader/diffuser 3. Final chamber with beam in air capability

 IONS - p, , Li, C, O,..  IONS - p, , Li, C, O,..  RANGE - 2 to 200  m  RANGE - 2 to 200  m  ION RATE - currents p/s  ION RATE - currents p/s  ION POSITION - focusing and scanning  ION POSITION - focusing and scanning

protons C Si Cu I E ions = 1 MeV/amu MIPs SiliconI 127Si 28C 12He 4H 1 Range(µm) E=1 MeV Range (µm) E=10 MeV Accel. voltages 0.1 to 6.0 MV Negative Ion sources: -Duoplasmatron -RF He -Sputtering

V Q V V out Ouput signal V out Deposited energy Principles of radiation detection techniques V out = F (deposited energy, free carrier transport) Nuclear spectroscopy Well known Free charge genetration and transport

V Q V V out Ouput signal V out Deposited energy Principles of IBIC V out = F (deposited energy, free carrier transport) Free charge genetration and transport Well knownMaterial characterization

Bethe formula: a) Energy deposition by ions Principles of IBIC b) Creation of e-h pairs

c) Free charge carrier transport → charge induced at electodes Principles of IBIC Gunn’s theorem: V Q V V out d T=0 v year 1964

c) Free charge carrier transport → charge induced at electodes Principles of IBIC Gunn’s theorem: V Q V V out d T=1

c) Free charge carrier transport → charge induced at electodes Principles of IBIC Gunn’s theorem: V Q V V out d T=2

c) Free charge carrier transport → charge induced at electodes Principles of IBIC Gunn’s theorem: V Q V V out d T=3

c) Free charge carrier transport → charge induced at electodes Principles of IBIC Gunn’s theorem: V Q V V out d T=4

c) Free charge carrier transport → charge induced at electodes Principles of IBIC Gunn’s theorem: V Q V V out d T=5

c) Free charge carrier transport → charge induced at electodes Principles of IBIC Gunn’s theorem: V Q V V out d T=6

c) Free charge carrier transport → charge induced at electodes Principles of IBIC Gunn’s theorem: V Q V V out d T=7

c) Free charge carrier transport → charge induced at electodes Principles of IBIC Gunn’s theorem: V Q V V out d T=8

c) Free charge carrier transport → charge induced at electodes Principles of IBIC Gunn’s theorem: V Q V V out d T=9

c) Free charge carrier transport → charge induced at electodes Principles of IBIC Gunn’s theorem: V Q V V out d T=10

c) Free charge carrier transport → charge induced at electodes Principles of IBIC Gunn’s theorem: V Q V V out d T=11

Impact of defects on charge carriers mobility: Principles of IBIC - physical opservable:

Principles of IBIC - direct implication from Gunn’s theorem: - consequences: electronsholes ion beam CCE 100% a) b) - V 0 he

Advantages of using focused ions: - spatial resolution - wide spread of ion ranges Principles of IBIC 20  m Electrons 10 keV Electrons 40 keV 2 MeV H+ in Si3 MeV H+ in Si 4 MeV H+ in Si 2  m 4  m 6  m 47  m 90  m 147  m

PIN diode Samples

CVD diamond CdInGaSe solar cell Si DSSD (16x16 strips) Ion beam Samples Laura Grassi, Wednesday, 16:00h

100  m Geometries

- by proper selection of ion type and energy, CCE (charge collection efficiency) at different sample depths can be imaged. 4.5 MeV Li range 6μm 3 MeV protons range 90 μm Si Schotky diode surface bulk Frontal IBIC

4.5 MeV Li 7 ions (range in Si 8.5  m) O 16 ions (range in Si 4.5  m) Li image - O image / 2.8 IBIC between 4.5 and 8.5  m Frontal IBIC – depth profiling Si Schotky diode

Frontal IBIC – drift & diffusion drift diffusion E ≠ 0E = 0 minority carrier diffusion length 4H-SiC diode

drift diffusion E ≠ 0E = 0 Frontal IBIC – drift & diffusion 4H-SiC diode

drift diffusion E ≠ 0E = 0 Frontal IBIC – drift & diffusion 4H-SiC diode

drift diffusion E ≠ 0 - direct measurement of diffusion length L p = (9.0±0.3) μm Frontal IBIC – drift & diffusion 4H-SiC diode

Frontal IBIC – μτ mapping - from Gunn’s theorem with assumptions of full depletion, constant electric field and generation near one electrode: electrons holes Hecht equation CdZnTe - sample thickness > 2 mm - IBIC with 2 MeV p +, range < 30 μm M. Veale et al., IEEE TNS, 2008

Si power diode E = 0 pn junction E < 0 ion beam 0 zdzd z CCE (z<z d ) ≈ 1 CCE (z>z d ) = exp(-(z-z d )/L p,n ) hole or electron diffusion length Lateral IBIC – drift and diffusion

3 MeV proton beam X-Y scanning Cooling-heating BiasPreamplifierAmplifier ADC Digital oscilloscope DSO TRIBIC DAQ IBIC MAPS CdZnTe Au-contacts Temperature dependent lateral IBIC CdZnTe - temperature range K

(  ) e =(1.4)*10 -3 cm 2 /V (  ) h =1*10 -5 cm 2 /V (  ) e =(1.4)*10 -3 cm 2 /V (  ) h =1*10 -5 cm 2 /V IBIC line scan (anode to cathode) for CCE=100% Temperature dependent lateral IBIC CdZnTe

Radiation hardness tests - For 100% ion impact detection efficiency, IBIC can be used to monitor irradiation fluence - Irradiation of arbitrary shapes - On-line monitoring of CCE degradation Ion beam induced damage: 50 Li 7  m -2 = 5×10 9 cm -2 6 Li 7  m -2 = 6×10 8 cm -2 (4 events per pixel) IBIC on-line monitoring:

Irradiation pattern (3 x3 quadrants, 50 x 50 pixels, 100 x 100  m 2 each, 20  m gaps, t irrad = 5 min. – 3 h ) Radiation hardness tests - damage done with He, Li, O & Cl ions of similar range Si diode

Radiation hardness tests Modeling of CCE: - doping profiles & el. field (CV) - drift velocity profiles (el. field) - hole contribution negligible - vacancy profile (SRIM) - predominantly divacancies (DLTS) - dE/dx from (SRIM) - electron lifetime: k  = 0.88 * k = 0.18 !! 18% of radiation induced defects leads to stable divacancies ! effective fluence Si diode

Question: how to calculate the energy levels of produced traps? Answer: DLTS, but what if.....a) number of traps is very very large? b) I want good spatial resolution? c) my sample is diamod? Radiation produces lattice defectsel. active traps, CCE<100%

Question: how to calculate the energy levels of produced traps? Answer: DLTS, but what if.....a) number of traps is very very large? b) I want good spatial resolution? c) my sample is diamod? Ion Induced DLTS Steps: - IBIC with MeV ions, charge carriers will fill traps - record cumulative collected charge in time using charge sensitive preamp and digital scope at different temperatures - choose rate windows like in conventional DLTS - plot Q(t 2 )-Q(t 1 ) vs. T - make Arrhenius analysis and get activation energy of the defect Radiation produces lattice defectsel. active traps, CCE<100%

6H-SiC diode - irradiation with 1 MeV electrons,el. active traps, CCE<100% - IBIC with MeV alphas cumulative collected charge 250K<T<320 K Q(t 2 )-Q(t 1 ) vs. T Estimated activation energy: IIDLTS DLTS 0.50±0.05 eV 0.53±0.07 eV N. Iwamoto et al., IEEE TNS, 2011

C. Canali, E. Gatti, S.F. Koslov, P.F. Manfredi, C. Manfredotti, F. Nava, A. Quirini Nucl. Instr. Meth. 160 (1979) (transient current technique, TCT) - use of current sensitive amplifier instead of charge sensitive - high frequency oscilloscope, - novel technique ??? 400 μm thick natural diamond

- 2 GHz, 40 dB, 200ps rise time amplifier (CIVIDEC) - broad-band 3GHz scope (LeCroy) TCT on scCVD diamond at low temperatures H. Jansen (CERN), CARAT Workshop, GSI, 2011

Lower fields are required to reach saturation velocity at low tempertures Saturation velocity H. Jansen (CERN), CARAT Workshop, GSI, 2011

Plasma effects

Significantely higher charge trapping at low temperatures !! Charge trapping/detrapping H. Jansen (CERN), CARAT Workshop, GSI, 2011

Detrapping (~ 10 ns) Charge trapping/detrapping H. Jansen (CERN), CARAT Workshop, GSI, 2011

Position sensitivity - scCVD diamond, 500 μm thick - lateral scan with 4.5 MEV p - (μτ) e < (μτ) h - 6 GHz, 15dB preamp (Minicircuits) - 5 GHz, 10 GS/s scope (LeCroy) 0 500μm Achievable resolution ≈ 10 μm 500 μm thick scCVD diamond