Investigation of Strangeness Photo-Production near the Threshold Masashi Kaneta for the NKS2 collaboration Department of Physics, Tohoku University.

Slides:



Advertisements
Similar presentations
Hadron physics with GeV photons at SPring-8/LEPS II
Advertisements

 photoproduction with linearly polarized photons at SPring-8 SENDAI03 16 th June, 2003 Tsutomu Mibe (Research Center for Nuclear Physics, Osaka univ.,
Measurement of the  n(p)  K +   (p) at Jefferson Lab Sergio Anefalos Pereira Laboratori Nazionali di Frascati.
International Symposium on Strangeness in Nuclear and Hadronic Systems -SENDAI08- (Dec15-18) Neutral kaon photoproduction at LNS, Tohoku Masashi Kaneta.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
C x and C x for K + Λ and K +  o Photo-production R. Bradford Department of Physics and Astronomy, University of Rochester R. Schumacher Department of.
TIME-LIKE BARYON FORM FACTORS: EXPERIMENTAL SITUATION AND POSSIBILITIES FOR PEP-N Roberto Calabrese Dipartimento di Fisica and I.N.F.N. Ferrara, Italy.
 *(1520) CrossSection Zhiwen Zhao Physics 745. Λ BARYONS (S = − 1, I = 0) Λ 0 = u d s Λ(1520) D 03 I( J P ) = 0( 3/2 − ) Mass m = ± 1.0 MeV [a]
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Strangeness production around threshold region and a possibility with the new beam line and NKS2 Masashi KANETA for the NKS2 collaboration Department.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
Masashi Kaneta, LBNL Masashi Kaneta for the STAR collaboration Lawrence Berkeley National Lab. First results from STAR experiment at RHIC - Soft hadron.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
Status and Prospects of Hadron Physics at LEPS in Japan Takashi Nakano (RCNP, Osaka Univ.) International School of Nuclear Physics 37 th Course: Probing.
Hadron physics with meson photoproduction at LEPS/SPring-8 Tomoaki Hotta (RCNP, Osaka University) for LEPS Collaboration MESON 2010 CRACOW, POLAND 12 JUNE.
Lambda hypernuclear spectroscopy at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS collaboration 1.Introduction.
Yusuke TSUCHIKAWA R. Hashimoto, Q. He, T. Ishikawa, S. Masumoto, M. Miyabe, N. Muramatsu, H. Shimizu, Y. Tajima, H. Yamazaki, R. Yamazaki, and FOREST collaboration.
Crossed Channel Compton Scattering Michael Düren and George Serbanut, II. Phys. Institut, - some remarks on cross sections and background processes  
The search for deeply bound kaonic nuclear states at J-PARC Toshihiko Hiraiwa Kyoto University On behalf of the J-PARC E15 collaboration.
Evidence for a Narrow S = +1 Baryon Resonance in Photoproduction from the Neutron [Contents] 1. Introduction 2. Principle of experiment 3. Experiment at.
K +  photoproduction with the Crystal Ball at MAMI T.C. Jude The University of Edinburgh New method of K + detection with the Crystal Ball Extraction.
EPECUR – Investigation of narrow baryon resonances Konovalova Elena St. Petersburg Nuclear Physics Institute (PNPI) with collaboration Institute of Theoretical.
Workshop on LEPS/SPring-8 new beamline, 28~29 July 2005, RCNP, Japan  + photoproduction with vector K* (including other recent results) Seung-il Nam *1,2.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Motivation. Why study ground state hyperon electroproduction? CLAS detector and analysis. Analysis results. Current status and future work. M. Gabrielyan.
Kinematics of  + n   p   0  p reaction Susumu Oda 2007/04/10-19.
K*Λ(1116) Photoproduction and Nucleon resonances K*Λ(1116) Photoproduction and Nucleon resonances Sang-Ho Kim( 金相鎬 ) (NTG, Inha University, Korea) In collaboration.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
1 Tomoaki Hotta (RCNP, Osaka Univ.) for The LEPS Collaboration Cracow Epiphany Conference, Jan 6, 2005 Introduction LEPS experiment Results from new LD.
A search for deeply-bound kaonic nuclear states in (in-flight K -, N) reaction Hiroaki Ohnishi RIKEN.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
Study of γd --> K + Λn through 3-track detected events with the NKS2 HONDA Kazuhisa Tohoku University.
Λ and Σ photoproduction on the neutron Pawel Nadel-Turonski The George Washington University for the CLAS Collaboration.
Oct 6, 2008Amaresh Datta (UMass) 1 Double-Longitudinal Spin Asymmetry in Non-identified Charged Hadron Production at pp Collision at √s = 62.4 GeV at Amaresh.
The  p  K +  and  p  K +  0 reactions at SPring-8/LEPS Mizuki Sumihama RCNP, Osaka Univ. for the LEPS collaboration HYP2006 Oct. 13th 2006.
Beijing, Sept 2nd 2004 Rachele Di Salvo Beam asymmetry in meson photoproduction on deuteron targets at GRAAL MENU2004 Meson-Nucleon Physics and the Structure.
**PhD Dec (CLAS Analysis Note). OZI evading/respecting process 49.2 ± 0.6 % 34 ± 0.5 % Experimentally this decay mode is (15.3 ± 0.4) % mode is.
HLAB meeting paper 2011/1/18 T.Gogami CLAS ( CEBAF Large Acceptance Spectrometer ) Clam shell is open.
The Investigation of Strangeness Photoproduction in the Threshold Region at LNS-Tohoku Masashi Kaneta for the NKS/NKS2 collaboration Department of Physics,
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
K* photoproduction from g11 K. Hicks Ohio University HSG meeting, 12 June 2009.
Recent Results from LEPS/SPring-8 Ken Hicks Ohio University, USA Sept. 21, 2009 on behalf of LEPS collaboration International Conference on Quark Nuclear.
Photoproduction of Pentaquarks Seung-il Nam *1,2 Atsushi Hosaka 1 Hyun-Chul Kim 2 1.Research Center for Nuclear Physics (RCNP), Osaka University, Japan.
Dynamical coupled-channels approach to meson production reactions in the N* region and its application to neutrino-nucleon/nucleus reactions Hiroyuki Kamano.
Electrophoto-production of strangeness and  Hypernuclei Osamu Hashimoto Department of Physics, Tohoku University October 21-22, 2004 Jeju University.
Cascade production – preliminary results Cascades  and  are reconstructed in decay chain   and  K, respectively. Plots in the first row show mass.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート.
Study of Charged Hadrons in Au-Au Collisions at with the PHENIX Time Expansion Chamber Dmitri Kotchetkov for the PHENIX Collaboration Department of Physics,
July 10, 2006TAPS 2006 Experimental Hall-D and the GlueX Experiment at Jefferson Lab Dr. David Lawrence Jefferson Lab Dr. David Lawrence Jefferson Lab.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
Quarkonia production with the HERA-B experiment J. Spengler, MPI Heidelberg.
Open and Hidden Beauty Production in 920 GeV p-N interactions Presented by Mauro Villa for the Hera-B collaboration 2002/3 data taking:
Future Plan of the Neutral Kaon Spectrometer 2 (NKS2) Experiment
L*(1520) Photoproduction off Proton and Neutron from CLAS eg3 data set
Precision Measurement of η Radiative Decay Width via Primakoff Effect
Photoproduction of charged pions on deuteron
M. Miyabe, K. Horie, S. Shimizu, W. C. Chang and LEPS collaboration
NKS2 Meeting with Bydzovsky NKS2 Experiment / Analysis Status
E19 result Ryuta Kiuchi (SNU)
Proposal for an Experiment: Photoproduction of Neutral Kaons on Deuterium Spokespersons: D. M. Manley (Kent State University) W. J. Briscoe (The George.
Presentation transcript:

Investigation of Strangeness Photo-Production near the Threshold Masashi Kaneta for the NKS2 collaboration Department of Physics, Tohoku University

2 Questions

3 Q. 1 You are: (1) an under graduate student, (2) a master course student, (3) a doctor course student, or (4) not a student

4 Q. 2 Have you ever taken a class of nuclear physics?

5 Q. 3 Do you think that QCD can calculate everything of hadron?

6 Quark StarNeutron Star Stars compression phase transition QCD Phase Diagram Baryon density Baryon Big bang Temperature Quark-Gluon Plasma (QGP) phase cooling element synthesis 0 Meson phase transition Color superconductivity? Our world Neutron Star Hadron Phase

LHCCERN 7 Quark StarNeutron Star Stars compression phase transition Accelerators and Facilities Baryon density Baryon Big bang Temperature Quark-Gluon Plasma (QGP) phase cooling element synthesis 0 Meson phase transition Color superconductivity? Our world Neutron Star Hadron Phase JLab RCNP Osaka U. ELPH Tohoku U. RIBFRIKEN FAIRGSI J-PARC Spring-8 SISGSI AGSBNL SPSCERN RHICBNL LHCCERN SIS 200/300 GSI AGS J-PARC Beam Ion Hadron Photon

LHCCERN 8 Quark StarNeutron Star Stars compression phase transition My Phase Shift (Transition?) Baryon density Baryon Big bang Temperature Quark-Gluon Plasma (QGP) phase cooling element synthesis 0 Meson phase transition Color superconductivity? Our world Neutron Star Hadron Phase SPSCERN Graduate student of Hiroshima Univ.

9 Pictures of NA44 Era

LHCCERN 10 Quark StarNeutron Star Stars compression phase transition My Phase Shift (Transition?) Baryon density Baryon Big bang Temperature Quark-Gluon Plasma (QGP) phase cooling element synthesis 0 Meson phase transition Color superconductivity? Our world Neutron Star Hadron Phase SPSCERN RHICBNL ELPH Tohoku U PostDoc of LBNL and RIKEN-BNL Research Center

, RNC Group, LBNL 2004, RBRC Chirstman Party hosted by T.D. Lee

LHCCERN 12 Quark StarNeutron Star Stars compression phase transition My Phase Shift (Transition?) Baryon density Baryon Big bang Temperature Quark-Gluon Plasma (QGP) phase cooling element synthesis 0 Meson phase transition Color superconductivity? Our world Neutron Star Hadron Phase SPSCERN RHICBNL JLab ELPH Tohoku U Present Assistant Prof. of Tohoku Univ.

13 Outlook of This Talk

INTRODUCTION 序 14

15 General aim –Understanding the mechanism of strangeness production Reaction –hadron-hadron –gamma-nucleaon Missing resonance search w/ energy scan Characteristics of our experiment –Neutral channel K + data is not enough to make a model to predict cross section of neutral channel K 0 data is the KEY of the study –Threshold region No resonance decay effect in the final products Strangeness Photo-production

16 +N K+Y+N K+Y

17  +p  K + +   threshold: MeV   +p  K + +  0  threshold: MeV   +p  K 0 +  +  threshold: MeV   +n  K 0 +   threshold: MeV   +n  K 0 +  0  threshold: MeV   +n  K + +  -  threshold: MeV 

Data in the Market +nK0++nK0+ +nK++-+nK++- +nK0+0+nK0+0 LEPS experiment: differencial cross section in E= GeV with polarized photon beam PRL97 (2006) NKS experiment: differencial cross section in E= GeV PRC78(2008) CLAS experiment: differencial cross section in E= GeV PLB688(2010)289 +pK0+++pK0++ Phys.Rev.C73(2006) Phys.Lett.B464(1999)331 SAPHIR 18 +pK+++pK++ +pK+++pK++

Experiments to investigate Strangeness Photo-Production at LNS/ELPH, Tohoku Univ. 19

: Using TAGX spectrometer Reconstruct K 0 S from  +  - decay The first measurement of K 0 cross section from nK 0 + reaction [Phys.Rev.C78(2008)014001] Neutral Kaon Spectrometer 20 Experiments to investigate Strangeness Photo-Production at LNS/ELPH, Tohoku Univ.

2005 Construction of new spectrometer Data taking Upgrade inner detectors 2010 Data taking 21 Experiments to investigate Strangeness Photo-Production at LNS/ELPH, Tohoku Univ.

22 The NKS2 Collaboration Department of Physics, Tohoku University B. Beckford, T. Fujii, Y. Fujii, T.Fujibayashi, K. Futatsukawa, O. Hashimoto, A. Iguchi, H. Kanda, Kaneko, M. Kaneta, T. Kawasaki, C. Kimura, S. Kiyokawa, T. Koike, K. Maeda, N. Maruyama, Matsubara, Y. Miyagi, K. Miwa, S.N. Nakamura, A. Okuyama, H. Tamura, K. Tsukada, N. Terada, F. Yamamoto Research Center of Electron-Photon Science, Tohoku University K. Hirose, T. Ishikawa, T. Tamae, H. Yamazaki Department of Nuclear Science, Lanzhou University, Lanzhou, China Y.C. Han, T.S. Wang Nuclear Institute, Czech Republic P. Bydzovsky, M. Sotona 博士課程前期 ( 修士で卒業 ) 博士課程後期 (Dr.Sc. を所得 )

EXPERIMENT 実験 23

24 青葉山キャンパス 電子光理学研究センター Research Center of Electron-Photon Science (ELPH), Tohoku Univ. Linac (Max 200 MeV) Stretcher Booster Ring (Max 1.2 GeV)

25 BM4 tagger BM5 tagger to the GeV  experimental hall NKS2 Radiator (Carbon wire) to make Bremsstrahlung B Photon Beam Orbit electron (1.2 GeV) Scattered electron ( GeV) Tag F Tag B Sweep magnet Photon Beam line – top view – top view

26  beam vacuum of STB-ring Collimator Rejection of beam halo Sweep Magnet Rejection of e + e - Dipole Magnet Target System Making of liq. D 2 target Vacuum Region Suppress of pair creation Liquid D 2 Target Lead glass counter Measurement of tagging efficiency Photon Beam line – side view – side view BPM

27 NKS2 Detector Setup Dipole Magnet –B=0.42 [T] at the center Inner Hodoscope –Trigger –Start timing of TOF Outer Hodoscope –Trigger –Stop timing of TOF Straw Drift Chamber –Tracking (2D) Cylindrical Drift Chamber –Tracking (3D) Electron Veto Counter  beam 1.0 m A vertical cross section along beam

28 NKS NKS2

29  +d  K 0 +  +(p) K 0 S   + +       p Reaction Decay Mode Trigger Photon: Tagger hit 2 charged particle: nHit on IH2 and nHit on OH2 Background rejection: Veto of e  from upstream Trigger rate: ~1 kHz at 2 MHz tagger rate DAQ efficiency ~70%

RECENT RESULTS 最近の結果 30

31 Particle Identification 1/ charge×momentum [GeV/c] Mass square [GeV 2 /c 4 ]   p d  p d

32 Background Rejection - decay volume cut Target cell No cut Decay vertex resolution 1.1mm for horizontal 4.2mm for vertical

33 Invariant Mass Distributions

34 Error bars : statistical only Differential Cross Section E  = 0.90 – 1.00 GeV E  = 1.00 – 1.08 GeV d  /dp Lab [  b/(GeV/c)] p Lab [GeV/c]  + d  K 0 + X (mainly  + n  K 0 +  )

Error bars : statistical only E  = 0.90 – 1.00 GeV E  = 1.00 – 1.08 GeV d  /dp Lab [  b/(GeV/c)] p Lab [GeV/c] 35 Differential Cross Section  + d   + X (mainly  + n  K 0 +  and  + p  K + +  )

COMPARISON WITH MODELS モデルとの比較 36

Models near the threshold Effective Lagrangian Approach also knows as Isobar model 37 Rigge Plus Resonance Model

Theoretical Study: Effective Lagrangian Approach Hadron coupling –Isospin symmetry Electromagnetic (photo) coupling –Helicity amplitude Charged and neutral nucleon resonances –Decay width Charged and neutral Kaon resonances    N N N K K K s channel t channel u channel Y N N *   * K,K *,K 1 Y Y YY*YY*  N K Contact term Y 38 0.45 in Kaon-MAID, estimated from pK 0  + data Free parameter in Saclay-Lyon A However, the decay width of K 1 resonance is not known

Characteristics of K  Channel - comparison with K  - comparison with K  39  N K Y s channel In the s-channel exchange, K  : N* K  : N* and  *

Characteristics of K 0  Channel - comparison with K   40  N K t channel Y  N K u channel Y  N K Y s channel No contribution of charge term in coupling constants

Models Kaon-MAID –T.Mart, C.Bennhold –PRC61 (2000) (R) Saclay-Lyon A –T. Mizutani et al. –PRC58 (1998) Kaon -MAID Saclay -Lyon A Input data pK +  ○○ pK +  0 ○ pK 0  + ○ Resonances included in the model N (1650) S 11 ○ N (1710) P 11 ○ N (1720) P 13 ○○  (1900) S 31 ○  (1910) P 31 ○ K* (892) ○○ K 1 (1270) ○○  (1405) ○  (1670) ○  (1810) ○  (1660) ○ Hadronic form factor ○ contact term ○

42 Error bars : statistical only Comparison with Isobar Models d  /dp Lab [  b/(GeV/c)] p Lab [GeV/c]  + d  K 0 + X, E  = 0.90 – 1.00 GeV Kaon-MAID All K 0  K 0  0 K 0  + Saclay-Lyon A rkk = -1.0 rkk = -1.5 rkk = -2.0 Kaon-MAID  All

43 d  /dp Lab [  b/(GeV/c)] p Lab [GeV/c] Kaon-MAID All K 0  K 0  0 K 0  + Saclay-Lyon A rkk = -1.0 rkk = -1.5 rkk = -2.0 Kaon-MAID  All Comparison with Isobar Models  + d  K 0 + X, E  = 1.08 – 1.08 GeV Error bars : statistical only

Invariant Amplitude M = M background (Regge) +  M s (Isobar) Phys.Rev.C T. Corthals et al. 44 Regge Plus Resonance (RPR) Model  N K Y s channel N(1650) S 11, N(1710) P 11 N(1720)P 13, N(1720) P 13 N(1900) D 13 (1900) S 31 (1910) P 31 K*(892) Trajectory K(494) Trajectory  (t) t [GeV/c 2 ]

Calculation of RPR Model E  = GeV, cos  K0 Lab = Nucleon Resonances in the K  process N (1650) S 11, N (1710) P 11, N (1720) P 13, N (1900) P 11, N (1900) D 13 N (1900) D 13 : Missing Resonance No data to helicity amplitude of N (1900) D 13 → From -2.0 To 2.0 (Cyan Line 0.0) P.Vancraeyveld et al.: private communication Our results are two times larger than the calculations of RPR at least 45 Comparison with RPR Model

46 K 0  : Backward Distributions (fitting results) K +  : Forward Distributions (SAPHIR, CLAS) SAPHIR: K. H. Glander et al., Eur. Phys. J., A19:251–273, CLAS: R. Bradford et al., Phys. Rev., C73:035202, Kaon Angle distribution in CM

SUMMARY まとめ 47

48 Investigating strangeness photo-production via  + n  K 0 S +  channel using the NKS2 spectrometer at ELPH, Tohoku Univ. Differential cross sections of K 0 S and  in  +d K 0 S Larger angle coverage than previous experiment  The first measurement K 0 S +  total cross section estimated similar shape to K + +  as a function of E  Suggestion from comparison of data with models Angular distribution backward enhance in K 0 S +  ( K + + : slightly forward peak) Detector upgrade was done and we took new data

49 Upgrade Project To increase acceptance Inner detectors are replaced by Vertex Drift Chamber (VDC) New Inner Hodoscope (IH)

50VDCIH

BACK UP 予備 51

52  1 m Drift chambers CDC: Honeycomb cell SDC: Straw Drift chamber Counters Inner and Outer Hodoscope Electron Veto  beam Detector Setup

Results of NKS 53

Suggestion from NKS Results backward angular distribution in CM 54

E  [GeV] +n K0++n K0+  [b] 10 5 Saclay-Lyon A Kaon-MAID 0.9 Suggestion from NKS Results before after 55

NKS NKS2 Improved Acceptance by covering forward region NKS to NKS2 56

57 Error bars : statistical only Comparison with Isobar Models  + d   + X E  = 0.90 – 1.00 GeV E  = 1.00 – 1.08 GeV d  /dp Lab [  b/(GeV/c)] p Lab [GeV/c] Saclay-Lyon A rkk = -1.0 rkk = -1.5 rkk = -2.0 Kaon-MAID  All

58 Integral Cross Section : Inclusive  Integral Region : cos   Lab = Error : statistical error Systematic Uncertainty : < 14 %

59 [1] K. H. Glander et al., Eur. Phys. J., A19:251–273, [2] M. Q. Tran et al., Phys. Lett., B445:20–26, Total Cross Section  +d  K + +  +n Estimated

Strange TDC distribution 0xFxxxx is continued in negative region as accidental coincidence distribution The module recorded hit after common stop –Program is needed to be modified When this range is treated as negative value We found that there are many hits in unexpected TDC range Negative value hit time after common stop 60

Beam Test in 2010/4/26-28 Changing TDC module parameters –Set a time window not to measure a time after Common Stop –One trigger configuration was tested (as the result) Test was terminated due to a wire broken Original Set a time window Red and Blue: different time window 61

Beam Test in 2010/ 6 /1-4 Trigger Combination Check –w/ or w/o Electron Veto Counter in downstream region –To be biased or not to be –At ~2MHz beam rate, DAQ efficiency is ~65% (same order with run-2007) Now, 29 AMT-VME boards It was 21 in 2007 Test for reducing number of TDC modules –How effective to increase number of DAQ PC –results: about 1.15 times better at 2.0MHz beam rate 62