Biochemistry Fundamentals Professor Richard Dinsdale Inaugural Bio-Methane Regions Event Training the Trainers 26-27 th May 2011 -

Slides:



Advertisements
Similar presentations
Microbial Nutrition Cell metabolism
Advertisements

Gas out Biomas in Biomas out (Digestate) Biogas production.
Bioenergetics of Anaerobic Microbial Reactions Traditional and new processes.
AD101 – Nutrient Transformations, Nutrient Management, and Benefits Pius Ndegwa Nutrient Management & Air Quality Specialist Biological Systems Engineering.
Soil Organic Matter Section C Soil Fertility and Plant Nutrition.
SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann La production de biohydrogène à partir de substrats carbohydratés.
1/38 21 – Landfill gas 21 Landfill gas 1. 2/38 21 – Landfill gas “Landfill gas is an explosive topic” (J.Jacobs, 2006)
BIOL 4848/6948 (v. S07) Copyright © 2007 Chester R. Cooper, Jr. Environmental Conditions for Growth and Tolerance of Extremes Biology of Fungi, Lecture.
Module 71 Measurements in Water & Wastewater On completion of this module you should be able to:  Have an understanding of the use of oxygen demand as.
Energy and Respiration Larry Scheffler Lincoln High School
Energy and Respiration
Hema Rughoonundun Research Week Outline of Presentation The MixAlco Process Introduction Sludge Materials and Methods Results Fermentation of sludge.
Cellular Pathways that Harvest Chemical Energy
Carbon in the form of CO 2, HCO 3 - and CO 3 -2, are oxidized forms of C, and tend to be the only forms present where O 2 is plentiful. In anoxic environments.
Key Area 6 : Growth in Micro-organisms
Cell Nutrients Nutrients required by cells can be classified in two categories: - are needed in concentrations larger than M. C, N, O, H, S, P, Mg.
CHAPTER 3 ESSENTIALS OF METABOLISM Photo courtesy of Dr. Brian Oates.
Chapter 5 Microbial Nutrition.
Chemical Bonds The interaction between 2 atoms may result in the formation of a chemical bond whereby 2 atoms are chemically linked to one another –2 major.
CHAPTER 3 Composition of Cells (part 1) By Muhammad Bilal Javed.
$200 $800 $600 $400 $800 $400 $200$200 $800 $400$400 $1000$1000 $600 $400 $1000 $200 $600 $200 $600 $1000 $600 $800$800 $1000.
ERT 417/4 WASTE TREATMENT IN BIOPROCESS INDUSTRY SEM 1 (2009/2010) ‘Management of Waste’ By; Mrs Hafiza Binti Shukor.
Role of microorganisms in the cycling of elements
Anaerobic Digestion of Biodiesel and Biodiesel Waste Products James Duncan.
Peter Ciborowski Minnesota Pollution Control Agency
Use the left mouse button to move forward through the show Use the right mouse button to view the slides in normal view, edit or print the slides The following.
ERT Biofuel BIO ETHANOL What, Why, How, How much, ….
CHAPTER 2 Major Metabolic Pathway
Biological and Chemical Conversion Technologies
Growing of microorganism
High Rate Thermophilic Anaerobic Membrane Bioreactor for Wastewater Treatment by Kaushalya C. Wijekoon Master Student (st107821) EEM/SERD Wastewater Ξ.
Microbial Metabolism Metabolism and Energy
Microbiology. Microbiology of biogas  Anaerobic digestion utilizes a consortium of microbes in four distinct phases  Products of one phase are feedstocks.
Introduction Enzymes Energy Production Bacterial Catabolism
Cellular Respiration. C6H12O6 + O2  CO2 + H2O + energy Glucose + oxygen carbon + water + ATP dioxide.
Anaerobic Digestion and Biogas Terminology and designs.
Energy & Metabolism Matter – anything that has mass and takes ups space Energy - capacity to do work or bring about change Matter is a form of energy.
Fermentation variables
1 CE 548 II Fundamentals of Biological Treatment.
Chpt. 12: Respiration. Two types of respiration External Respiration Internal respiration -is the process by which - is the controlled organisms exchange.
Biogas Somporn Jenkunawat.
Batterjee Medical College. Ass. Prof. Dr. Manal El Said Head of Microbiology Department Bacteria Growth and Physiology.
Chapter 8 Metabolism: Energy and Enzymes Energy is the capacity to do work; cells must continually use energy to do biological work. Kinetic Energy is.
Section one Answer 5 of the following 6 problems (3 marks each) 1.1) Explain the major reactions of the Sulfur cycle by pointing out: a) the environmental.
NOTES: Ch 9, part & Fermentation & Regulation of Cellular Respiration.
Bacterial Fermentation  Microbial metabolic processes are complex, but they permit the microbiologist to distinguish among microorganisms grown in culture.
Anaerobic Treatment Anaerobik Arıtma Biyoteknolojisi
1 Impact of Fluoride on Microorganisms in Wastewater Treatment Chandra Khatri, Valeria Ochoa and Reyes Sierra-Alvarez Department of Chemical and Environmental.
Chapter 6 The Chemistry of Life. Atoms and their interactions.
Bacteria Identification : Growth Parameters. Complex Media Made from complex and rich ingredients –Ex. Soya protein extracts –Milk protein extracts –Blood.
Principles of anaerobic wastewater treatment and sludge treatment Jan Bartáček ICT Prague Department of Water Technology and Environmental Engineering.
Chapter 07 Cellular Respiration Biology II – Dual Enrollment.
Chapter 6 Microbial Nutrition and Growth. Microbial Growth Microorganisms are found in the harshest of environments – Deep ocean – Volcanic vents – Polar.
NAJRAN UNIVERSITY College of Medicine NAJRAN UNIVERSITY College of Medicine Microbiology &Immunology Course Lecture No. 4 Microbiology &Immunology Course.
Why are microbes important? Ecological Importance of Microbes (Applied and Environmental Microbiology Chapter 25)
Biochemical Reactions SBI4U1. Acids produces H + ions in H 2 O pH below 7 Sour taste, conducts electricity Increase [H + ] or [H 3 O + ] ions when dissolved.
METHANOGENS AND BIOGAS. Methanogen An anaerobic microorganism that grows in the presence of carbon dioxide and produces methane gas. Methanogens are found.
Microbial Growth refers to increase in number of cells not in size.
ANAEROBIC DIGESTION. What is AD?  Process: microbs attack OM + no oxygen = biogas + solid + liquid residue  Common: stabilisation of sewage sludge,
BIOGAS PRODUCTION. Introduction Animal and agricultural wastes constitute a high proportion of biomass and their utilization and recycling is important.
Operational Conditions for Anaerobic Digesters
Unit Process in Biological Treatment
Bacterial Bacteria break down and utilize food
Bacterial Nutrition, Metabolism and growth
ERT 417 Waste Treatment In Bioprocess Industry
Micro-organisms understand the role of yeast in the production of beer
Bacterial physiology Dr. Ghada Younis th,Dec.
ANAEROBİC WASTEWATER TREATMENT
Metabolism and Survival
Presentation transcript:

Biochemistry Fundamentals Professor Richard Dinsdale Inaugural Bio-Methane Regions Event Training the Trainers th May University of Glamorgan, South Wales

Overall Aim of the Anaerobic Digestion Process Anaerobic digestion is the conversion of organic material in the absence of oxygen to methane and carbon dioxide by a microbial consortia. C X H Y O Z CO 2 +CH 4 + anaerobic bacterial biomass

How Do We Get Methane? Need Methanogens! Either Hydrogen (Lithotrophic methanogens) 4H 2 + CO 2 CH H 2 O AND/OR Acetate (acetoclastic methanogens) CH 2 COOH + H 2 O CH 4 + CO 2 BUT have a limited range of substrates Can also include carbon monoxide, formate, methanol

The Anaerobic Digestion Microbial Consortia The production of biogas is dependant on the successful interaction of interdependent microbial species. The production of methane is a property of a (relatively) limited number of micro-organism species, the “methanogens”. There is a limited number of substrates that the “methanogens” can use to produce methane.

The Stages in Anaerobic Digestion Hydrolysis – Long chain polymers broken down to smaller molecules Acidogenesis – Production of hydrogen and volatile fatty acids Acetogenesis – alcohols, >C2 VFAs converted to acetate and hydrogen Methanogenesis – Hydrogen and acetate converted to methane

The Steps in Anaerobic Digestion Hydrolysis Acidogenesis Acetogenesis Methanogenesis Taken from Guwy, (1996). Modified from Mosey, (1983)

Factors Effecting the Rate of Hydrolysis Particle size of the waste, smaller is better. Accessibility of the substrate i.e. how easy is it for the enzymes to attack the substrate – Problems with lipids Residence time in the reactor. Chemical structure of substrate – Negative impact of lignin and hydrocarbons Organic content of the substrate.

Acidogenesis The sugars, amino acids and longer chain fatty acids are then fermented to acetate, propionate, butyrate, valerate, ethanol, lactate, hydrogen, CO 2, ammonia and sulphide by the acidogenic bacteria. The proportion of the organic products of the acidogenic bacteria is determined by the H 2 concentration and pH.

Acetogenesis The acetogens (obligate hydrogen producing acetogenic bacteria) convert the fermentation products which the methanogens cannot use (alcohols, >C2 VFAs, aromatic compounds) to the substrates which the methanogens can utilise. The Gibbs free energies for the conversion of ethanol, propionic and butyric to acetate and hydrogen are energetically unfavourable i.e. positive at standard free biochemical energy levels (pH 7.0, 1 atm.).

Why are Propionic and Butyric Acids bad? Don`t smell very nice ! Wasted energy as methanogens can`t use them Very difficult to get rid of. CH 3 CH 2 COOH + 2H 2 O CH 3 COOH + CO 2 + 3H 2 Propionic acid NOT beneficial for the microorganisms as G 0 = KJ mol -1 Energy could be required to be put in to use the propionic acids.

Role of Interspecies Hydrogen Transfer The H 2 partial pressure must be maintained at between atmospheres for sufficient energy for growth to be obtained from propionic and butyric acids. As H 2 is continually being generated it must be continually be removed for methanogenesis to occur. The removal of H 2 is achieved by conversion to methane by the hydrogen utilising methanogens. This symbiosis is known as interspecies hydrogen transfer and is crucial to the success of the anaerobic digestion process.

Graphical representation of the hydrogen-dependant thermodynamic favourability of acetogenic oxidations and inorganic respirations associated with the anaerobic degradation of waste organics. (1) Propionic oxidation to acetic acid, (2) butyric oxidation to acetic, (3) ethanol to acetic, (4) lactic to acetic, (5) acetogenic respiration of bicarbonate, (6) methanogenic respiration of bicarbonate, (7) respiration of sulphate to sulphide, (8) respiration of sulphite to sulphide, (9) methanogenic cleavage of acetic acid, (10) SRB-mediated cleavage of acetic acid. (From Harper and Pohland, 1985). Methanogenic “Hydrogen” Niche

The Methanogens A group of gram –ve bacteria Belong to the group of bacteria termed the Archaea or archaebacteria. Are strict anaerobes they evolved billions (3.5 billion) years ago when the earth had very low or zero levels of oxygen. Utilise simple inorganic substrates such as H 2, CO 2 or simple organic substrates such as acetate, formate and methanol

Image source: Dr L. Hulshoff and Professor van Lier; Sub-department of Environmental Technology, Wageningen University, Netherlands The Archaea Scanning electron micrograph of archaea from the genus Methanosaeta. Members of the genus Methanosaeta are acetotrophic, i.e. they produce methane from acetate. Scanning electron micrograph of a cocci-shaped archaea from the genus Methanosarcina. Members of the genus Methanosarcina can use all 3 routes to methane.

Specific Growth Conditions These micro-organisms have been difficult to culture in vitro as in nature they are dependant on other bacteria to provide a suitable environment for their growth. The fermentative bacteria provide a environment with a; low redox potential (-330 mV) extremely low in O 2 suitable range of substrates

Analysing The Consortia Traditional microbiology – “petri” dish technology (some problems here) – Enzymatic profiles Molecular Biology Techniques – PCR/RT PCR – DGGE – FISH – Genomics and Proteomics – Microarrays

Limited Range of Substrates Hydrogen (Lithotrophic methanogens) 4H 2 + CO 2 CH H 2 O Very beneficial for the microorganisms as G 0 = KJ mol -1 is gained. But only 30% of methane produced via this route.

Limited Range of Substrates Acetate (acetoclastic methanogens) CH 2 COOH + H 2 O CH 4 + CO 2 Not so beneficial for the microorganisms as only G 0 = - 32 KJ mol -1 is gained. But 70% of methane produced via this route.

Other Anaerobic Processes Unfortunately other gases are produced as well as methane and CO 2. These include hydrogen sulphide (H 2 S) and ammonia (NH 3 ) Hydrogen Sulphide is produced by a competing group of bacteria to the methanogens called the sulphate reducing bacteria.

What Effects the % and amount of Methane in the Biogas Relative solubility of the gases Is alkalinity being destroyed? Biodegradability of substrate Chemical composition of biodegradable substrate – Buswell equation

Sulphate Reducing Bacteria (SRBs) Are a problem for methanogenesis as: Compete with methanogens for their source of energy (hydrogen and acetate). Can become inhibitory (cellular toxin) at dissolved levels of 50 mg/l. More of the dissolved form at lower pH.

Competitive Nature of SRBs 4H 2 + SO 4 2- H 2 S + 2 H 2 O Very beneficial for the micro-organisms as G 0 =-154 KJ mol -1 is gained. CH 2 COOH + SO 4 2- H 2 S + 2HCO 3 - Not so beneficial for the micro-organisms as only G 0 = - 43 KJ mol -1 is gained BUT more than the methanogens

Keeping “ The Workers” Happy The bacterial consortium requires a number of factors to be controlled to maintain performance. These include: Temperature pH (related to buffering capacity) Essential Nutrients Avoid toxic compounds Sufficient residence time to reproduce

The Effect of Temperature Three temperature optima have been reported for the anaerobic digestion process phsycrophilic (around 15 o C), mesophilic (around 35 o C) and thermophilic (around 55 o C) temperatures. Methanogenesis has been found to occur upto 75 o C but the optimum temperature is thought to be o C. The advantage of the higher temperature ranges is that the process will proceed at a faster rate than the lower temperature ranges as stated by the Arrhenius equation.

The Effect of pH Different groups in the anaerobic consortia can cope with different pH levels – Methanogens prefer pH – Acidogens also prefer pH BUT can cope with pH 5.2 Therefore if pH is lowered methane production will slow and consumption of VFA reduce while VFA production continues. Spiral of Decline. Effects methane production but also distribution of volatile fatty acids

Bicarbonate Alkalinity and pH pH Scale is the log 10 of the H + concentration. Bicarbonate alkalinity is a measure of the H + buffering capacity of the reactor. Measured in mg/l CaCO 3 – If you have a alkalinity buffer then difference is between walking a tight rope and a plank when operating the digester. – If alkalinity is decreasing may be a sign of trouble before pH drops below critical level.

Nutrient Requirements The anaerobic consortia need nutrients to grow their cells and drive their enzymes and metabolic processes. Can be divided up into macro and micro nutrients. Need to be “available”

Macro nutrients Relatively large quantities – C/N/P ratios – Also need sulphur! C N P S :15-20: 5 : 3

Micronutrients (Trace Elements) Needed in much lower quantities (g per m 3 ) Required for enzyme activity Includes : Ni, Fe, Co, Se, Mg etc.

Toxic or Inhibitory Compounds Divided into two groups: – Too much of a good thing Ammonia Sulphate Ca/Na/K – Should not be here at all Cleaning compounds Antimicrobials Solvents Heavy metals

Ammonia Toxicity Ammonia (NH 3 ) and ammonium (NH 4 + ) is required to provide N for growth. Too much of a good thing e.g. abattoir wastes. Dependant on pH, Ammonia (NH 3 ) is toxic and is produced from ammonium (NH 4 + ) as pH increases. ammonia inhibitory at 80 mg/l ammonium inhibitory at 1500 mg/l

Na/Ca/K Cation inhibition Useful as used to provide pH and alkalinity control and nutrients Ca also contributes to precipitation/scale Inhibitory levels – Na 5000 mg/l to 30,000 mg/l – K 2,500 mg/l to 5000 mg/l – Ca 2,500 mg/l to 7,000 mg/l

Avoiding Overloading If significant “overworking” of the bacteria can lead to stress and eventual failure.. Can be avoided by using rules on hydraulic retention time (HRT) AND organic load (OLR).

Conclusions The anaerobic digestion process depends on the effective working of a complex interaction of microorganisms. It has been working successfully for 3.5 billion years. However there a wide number of ways which we can make it not work very well. It can be breaking down and still seem to be working

Thank You Questions " The sole responsibility for the content of this document lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein."