Chapter 3 -1 ISSUES TO ADDRESS... How do atoms assemble into solid structures? How does the density of a material depend on its structure? When do material.

Slides:



Advertisements
Similar presentations
Fundamental Concepts Crystalline: Repeating/periodic array of atoms; each atom bonds to nearest neighbor atoms. Crystalline structure: Results in a lattice.
Advertisements

Chapter 3: The Structure of Crystalline Solids
Chapter 3: The Structure of Crystalline Solids
CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES
CRYSTAL STRUCTURE- Chapter 3 (atomic arrangement) Why study this?
CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES
TOPIC 3: STRUCTURE OF SOLIDS
ISSUES TO ADDRESS... How do atoms assemble into solid structures? How does the density of a material depend on its structure? When do material properties.
Solids Ch.13. Solids Fixed, immobile (so to speak) Fixed, immobile (so to speak) Symmetry Symmetry Crystals Crystals So what’s the inner order? So what’s.
SUMMARY: BONDING Type Bond Energy Comments Ionic Large!
PRINCIPLES OF PRODUCTION ENGINEERING
THE STRUCTURE OF CRYSTALLINE SOLIDS
How do atoms ARRANGE themselves to form solids? Unit cells
Lecture 4 The structure of crystalline solids L e a r n i n g O b j e c t i v es outcomes: 1.Describe the difference in atomic/molecular structure between.
ENE 311 Lecture 3. Bohr’s model Niels Bohr came out with a model for hydrogen atom from emission spectra experiments. The simplest Bohr’s model is that.
Chapter 3: Structure of Metals and Ceramics Goals – Define basic terms and give examples of each: Lattice Basis Atoms (Decorations or Motifs) Crystal Structure.
Chapter 2. Reciprocal Lattice Issues that are addressed in this chapter include: - Reciprocal Lattice - Packing Factor - Bragg law - Scattered wave amplitude.
Crystallography and Structure
Chapter 3 The Structure of Crystalline Solids Session I
THE STRUCTURE OF CRYSTALLINE SOLIDS
Why do we care about crystal structures, directions, planes ?
STRUCTURE OF METALS Materials Science.
Why do we care about crystal structures, directions, planes ?
Crystallography and Structure ENGR 2110 R. R. Lindeke.
Chapter 3: The Structure of Crystalline Solids
Structure of Solids Objectives By the end of this section you should be able to: Calculate atomic packing factors (HW) Compare bcc, fcc and hcp crystal.
MSE 528 Fall ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are inferred from bonding?
Chapter 3: Structures of Metals & Ceramics
Materials Engineering – Day 5
L03A: Chapter 3 Structures of Metals & Ceramics The properties of a material depends on the arrangement of atoms within the solid. In a single crystal.
WEEK 2 STRUCTURE OF MATERIALS MATERIALS SCIENCE AND MANUFACTURING PROCESSES.
Structure of crystalline solids
Chapter 3: The Structure of Crystalline Solids
ISSUES TO ADDRESS... How do atoms assemble into solid structures? (for now, focus on metals) How does the density of a material depend on its structure?
Crystal structures Unit-I Hari Prasad Assistant Professor
Chapter 3 -1 ISSUES TO ADDRESS... How do atoms assemble into solid structures? How does the density of a material depend on its structure? When do material.
Chapter 3 - Algebra and Physics Connections Program for TEA fellows 2015 Feb. 19 & March 5, 9:30 – 11:30 AM, Sims 207 BY Ponn Maheswaranathan, PhD Physics.
Crystal Structure A “unit cell” is a subdivision of the lattice that has all the geometric characteristics of the total crystal. The simplest choice of.
Chapter 3: The Structure of Crystalline Solids
Today we test the clickers again. We now venture into the world of Metals Metals.
SUMMARY: BONDING Type Bond Energy Comments Ionic Large!
MATERIALS SCIENCE Week 2 STRUCTURE OF MATERIALS. Why Study Crystal Structure of Materials? The properties of some materials are directly related to their.
Bravais Lattices in 2D In 2D there are five ways to order atoms in a lattice Primitive unit cell: contains only one atom (but 4 points?) Are the dotted.
Phase Transformations & Diffusion in Materials
Chapter 3: The Structure of Crystalline Solids
Chapter 3: The Structure of Crystalline Solids
Crystal Structure of Solids
Crystalline Solids BLB 12 th Chapter 12 Sections 1-3, 5.
§2.4 Crystal Structure and Complex Lattice
Properties of engineering materials
ENGINEERING REQUIREMENTS OF MATERIAL Fabrication RequirementsService RequirementsEconomics Requirements.
ME 330 Engineering Materials
Solid State Electronics EC 210 – EC 211 Prof.Dr. Iman Gamal Eldin Morsi 1.
The Structure of Crystalline Solids
Chapter 3: The Structure of Crystalline Solids
Chapter 3: The Structure of Crystalline Solids
Chapter 3: The Structures of Metals
OM INSTITUTE OF TECHNOLOGY,VANTVACHHODA
Chapter 3: Structure of Metals and Ceramics
CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES
CHAPTER 3: STRUCTURE OF CRYSTALLINE SOLIDS
SUMMARY: BONDING Type Bond Energy Comments Ionic Large!
Crystalline Structure of Metals
Atomic Bonding Primary Bonding: Ionic Bonding, non-directional
CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES
Crystallography and Structure
INTERACTIVE BONDING AND CRYSTAL STRUCTURE OF SOLIDS
MSE420/514: Session 1 Crystallography & Crystal Structure
CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES
Crystalline Solids (고체의 결정구조)
Presentation transcript:

Chapter 3 -1 ISSUES TO ADDRESS... How do atoms assemble into solid structures? How does the density of a material depend on its structure? When do material properties vary with the sample orientation? Chapter 3: The Structure of Crystalline Solids

Chapter 3 -2 After studying this chapter you should be able to do the following: Describe the difference in atomic/molecular structure between crystalline and noncrystalline materials. Draw unit cells for face-centered cubic, body-centered cubic, and hexagonal close-packed crystal structures. Derive the relationships between unit cell edge length and atomic radius for face-centered cubic and body-centered cubic crystal structures. Compute the densities for metals having face-centered cubic and body- centered cubic crystal structures given their unit cell dimensions. Given three direction index integers, sketch the direction corresponding to these indices within a unit cell. Specify the Miller indices for a plane that has been drawn within a unit cell. Describe how face-centered cubic and hexagonal close-packed crystal structures may be generated by the stacking of close-packed planes of atoms. Distinguish between single crystals and polycrystalline materials. Define isotropy and anisotropy with respect to material properties.

Chapter 3 -3 Non dense, random packing Dense, ordered packing Dense, ordered packed structures tend to have lower energies. Energy and Packing Energy r typical neighbor bond length typical neighbor bond energy Energy r typical neighbor bond length typical neighbor bond energy

Chapter 3 -4 atoms pack in periodic, 3D arrays Crystalline materials... -metals -many ceramics -some polymers atoms have no periodic packing Noncrystalline materials... -complex structures -rapid cooling crystalline SiO 2 noncrystalline SiO 2 "Amorphous" = Noncrystalline Adapted from Fig. 3.23(b), Callister & Rethwisch 8e. Adapted from Fig. 3.23(a), Callister & Rethwisch 8e. Materials and Packing SiOxygen typical of: occurs for:

Chapter 3 -5 Metallic Crystal Structures How can we stack metal atoms to minimize empty space? 2-dimensions vs. Now stack these 2-D layers to make 3-D structures

Chapter 3 -6 Tend to be densely packed. Reasons for dense packing: - Typically, only one element is present, so all atomic radii are the same. - Metallic bonding is not directional. - Nearest neighbor distances tend to be small in order to lower bond energy. - Electron cloud shields cores from each other Have the simplest crystal structures. We will examine three such structures... Metallic Crystal Structures

Chapter 3 -7 Rare due to low packing density (only Po has this structure) Close-packed directions are cube edges. Coordination # = 6 (# nearest neighbors) Simple Cubic Structure (SC) Click once on image to start animation (Courtesy P.M. Anderson)

Chapter 3 -8 APF for a simple cubic structure = 0.52 APF = a  (0.5a) 3 1 atoms unit cell atom volume unit cell volume Atomic Packing Factor (APF):SC APF = Volume of atoms in unit cell* Volume of unit cell *assume hard spheres Adapted from Fig. 3.24, Callister & Rethwisch 8e. close-packed directions a R=0.5a contains 8 x 1/8 = 1atom/unit cell

Chapter 3 -9 Coordination # = 8 Adapted from Fig. 3.2, Callister & Rethwisch 8e. Atoms touch each other along cube diagonals. --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing. Body Centered Cubic Structure (BCC) ex: Cr, W, Fe (  ), Tantalum, Molybdenum 2 atoms/unit cell: 1 center + 8 corners x 1/8 Click once on image to start animation (Courtesy P.M. Anderson)

Chapter Atomic Packing Factor: BCC a APF = 4 3  (3a/4) 3 2 atoms unit cell atom volume a 3 unit cell volume length = 4R = Close-packed directions: 3 a APF for a body-centered cubic structure = 0.68 a R Adapted from Fig. 3.2(a), Callister & Rethwisch 8e. a 2 a 3

Chapter Coordination # = 12 Adapted from Fig. 3.1, Callister & Rethwisch 8e. Atoms touch each other along face diagonals. --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing. Face Centered Cubic Structure (FCC) ex: Al, Cu, Au, Pb, Ni, Pt, Ag 4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8 Click once on image to start animation (Courtesy P.M. Anderson)

Chapter APF for a face-centered cubic structure = 0.74 Atomic Packing Factor: FCC maximum achievable APF APF = 4 3  (2a/4) 3 4 atoms unit cell atom volume a 3 unit cell volume Close-packed directions: length = 4R = 2 a Unit cell contains: 6 x 1/2 + 8 x 1/8 =4 atoms/unit cell a 2 a Adapted from Fig. 3.1(a), Callister & Rethwisch 8e.

Chapter A sites B B B B B BB C sites C C C A B B ABCABC... Stacking Sequence 2D Projection FCC Unit Cell FCC Stacking Sequence B B B B B BB B sites C C C A C C C A

Chapter Coordination # = 12 ABAB... Stacking Sequence APF = D Projection 2D Projection Adapted from Fig. 3.3(a), Callister & Rethwisch 8e. Hexagonal Close-Packed Structure (HCP) 6 atoms/unit cell ex: Cd, Mg, Ti, Zn c/a = c a A sites B sites A sites Bottom layer Middle layer Top layer