WP2: Physics Analysis and Simulation Objectives & Priorities Deliverables & Milestones Manpower Optimisation considerations P. Coyle, J. Brunner, CPPMarseille.

Slides:



Advertisements
Similar presentations
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Advertisements

ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Reso Shanidze 1 Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux Rezo Shanidze 17/06/2004 Seminar zu aktuellen.
ANTARES aims, status and prospects Susan Cartwright University of Sheffield.
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
SUSY06, June 14th, The IceCube Neutrino Telescope and its capability to search for EHE neutrinos Shigeru Yoshida The Chiba University (for the IceCube.
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
KM3NeT detector optimization with HOU simulation and reconstruction software A. G. Tsirigotis In the framework of the KM3NeT Design Study WP2 - Paris,
E. MignecoErice ISCRA, July Introduction to High energy neutrino astronomy Erice ISCRA School 2004 Emilio Migneco.
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
Spåtind Norway P.O.Hulth Cosmic Neutrinos and High Energy Neutrino Telescopes Spåtind 2006 lecture 1 Per Olof Hulth Stockholm University
Search for point sources of cosmic neutrinos with ANTARES J. P. Gómez-González IFIC (CSIC-Universitat de València) The ANTARES.
KM3NeT The Birth of a Giant V. Popa, KM3NeT Collaboration Institute for Space Sciences, Magurele-Bucharest, Romania.
Ice-fishing for Cosmic Neutrinos Subhendu Rakshit TIFR, Mumbai.
Antares simulation tools J. Brunner CPPM. Software scheme Calibrations Main stream External input Simulation Reconstruction.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Apostolos Tsirigotis Simulation Studies of km3 Architectures KM3NeT Collaboration Meeting April 2007, Pylos, Greece The project is co-funded by the.
Report of the HOU contribution to KM3NeT TDR (WP2) A. G. Tsirigotis In the framework of the KM3NeT Design Study WP2 Meeting - Marseilles, 29June-3 July.
Status of KM3NeT (Detector Design Optimisations) Christopher Naumann, CEA Saclay – IRFU / SPP for the KM3NeT consortium 44 th Reconcontres de Moriond,
KM3NET 24 September 2004 Gerard van der Steenhoven (NIKHEF)
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
Piera Sapienza – VLVNT Workshop, 5-8 october 2003, Amsterdam Introduction and framework Simulation of atmospheric  (HEMAS and MUSIC) Response of a km.
XXIII International Conference on Neutrino Physics and Astrophysics 2008 Christchurch, New Zealand Contacts:
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
Neutrino Diffuse Fluxes in KM3NeT Rezo Shanidze, Thomas Seitz ECAP, University of Erlangen (for the KM3NeT consortium) 15 October 2009 Athens, Greece.
Report of the HOU contribution to KM3NeT TDR (WP2) A. G. Tsirigotis In the framework of the KM3NeT Design Study WP2 Meeting - Erlangen, May 2009.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Tuesday 30 October :00 Introduction (30') Paschal Coyle (CPPM) 09:30 Lepton and cherenkov light propagation with mmc&photonics (30') Claudio Kopper.
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
IceCube Galactic Halo Analysis Carsten Rott Jan-Patrick Huelss CCAPP Mini Workshop Columbus OH August 6, m 2450 m August 6, 20091CCAPP DM Miniworkshop.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
The ANTARES detector: background sources and effects on detector performance S. Escoffier CNRS Centre de Physique des Particules de Marseille on behalf.
con i neutrini1 Showering Neutrino Astronomies at Horizons.
1 WP2Monday 16 April 2007 modify pass=wp20407 Introduction (15') P. Coyle (CPPM) Status of Sirene (30') E. Presani (Nikhef) Graphical User Interface for.
The AMANDA-II Telescope - Status and First Results - Ralf Wischnewski / DESY-Zeuthen for the AMANDA Collaboration TAUP2001, September.
The ANTARES Neutrino Telescope and its Dark Matter Capabilities
PHY418 Particle Astrophysics
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
V. Bertin - CPPM - MANTS Paris - Sept'10 Indirect search of Dark Matter with the ANTARES Neutrino Telescope Vincent Bertin - CPPM-Marseille on behalf.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Sebastian Kuch, Rezo Shanidze Preliminary Studies of the KM3NeT Physics Sensitivity KM3NeT Collaboration Meeting Pylos, Greece, April 2007.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
WP2: Physics Analysis and Simulation Objectives & Priorities Deliverables & Milestones Manpower Optimisation issues Discussion conclusions Some plots P.
The Gamma-Neutrino Connection in Transparent Sources – the Observational Side Alexander Kappes University Wisconsin-Madison Workshop on Non-Thermal Hadronic.
KM3NeT kickoff meeting, Erlangen 11 April 2006M. Circella, INFN contribution to WP2 1 INFN in WP2 Marco Circella on behalf of the collaboration Bari Bologna.
Search for diffuse cosmic neutrino fluxes with the ANTARES detector Vladimir Kulikovskiy The ANTARES Collaboration 3-9 August 2014ANTARES diffuse flux.
Alexander Kappes Erlangen Centre for Astroparticle Physics XIV Lomonosov Conference Moscow, August 25, 2009 High-energy neutrinos from Galactic sources.
Parallel session WP2 - Physics analysis and simulation (9:30 ->12:30) 09:30 Diffuse Galactic Flux -Andrew Taylor (DIAS) 09:55 MUPAGE status– Giada Carminati.
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
Geant4 Simulation for KM3 Georgios Stavropoulos NESTOR Institute WP2 meeting, Paris December 2008.
Point-like source searches with ANTARES RICAP Conference Rome, June 2007 Juan de Dios Zornoza (IFIC - Valencia)
Roma International Conference on Astroparticle Physics Rome, May 2013 Juan de Dios Zornoza (IFIC – Valencia) in collaboration with G. Lambard (IFIC) on.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
Imaging the Neutrino Universe with AMANDA and IceCube
The Antares Neutrino Telescope
Diffuse neutrino flux J. Brunner CPPM ESA/NASA/AVO/Paolo Padovani.
MC studies of the KM3NeT physics performance Rezo Shanidze
P. Sapienza, R. Coniglione and C. Distefano
Presentation transcript:

WP2: Physics Analysis and Simulation Objectives & Priorities Deliverables & Milestones Manpower Optimisation considerations P. Coyle, J. Brunner, CPPMarseille

Objectives & Priorities PriorityObjectives 11Define benchmark neutrino fluxes 21Development of event selection software 31Development of simulation software 41Development of reconstruction software 51Definition of data format, storage, distribution 61 Comparison of detector geometries in terms of physics sensitivity 72 Comparison of candidate sites in terms of physics sensitivity 81Development of calibration strategies

Deliverables & Milestones 6 months : benchmark neutrino fluxes and energy range (+uncertainties) Astrophysics sources - galactic SNR:RXJ1713, VELA-Jr uquasars: LS5039 CR interactions with gas near GC - extragalactic AGNs, GRBs, starburst galaxies… Diffuse flux WB bound Dark matter Sun, earth, galactic centre, IMBHs EHE GZK(Sigl) Top-down models Exotica monopoles, nuclearitescross-section modifications at EHE Lorentz invariance…… Neutrino decay decoherence Web page resource of relevant papers

Deliverables & Milestones 14 months : first release of simulation software packages Event generators Neutrino interactions Atmospheric muons Muon propagation Detector response Cherenkov light production Light propagation PMT & Front end electronics (needed dynamic range?) Calibrations Timing, amplitude Positioning, absolute pointing

Deliverables & Milestones 16 months : CDR contributions Description of software packages Event generator, Detector response, Calibrations Event selection, Reconstruction Scheme for data format, storage, distribution First results on detector architecture First results on site comparison First results on calibration studies

Deliverables & Milestones 34 months : TDR contributions Description of final software packages Event generator, Detector response, Calibrations Event selection, Reconstruction Scheme for data format, storage, distribution Final results on architecture optimization Final results on site comparison Final results on calibration systems

Manpower FTEM total FTEM requested Personnel total Personnel requested total IN2P CEA Erlangen (*2)274 INFN (+42 travel cons) 352 FOM Sheffield (*2) (+5 travel) 172 Basic request: 1-2 position for 3 years per institute

Optimization goals 3D grid of active detector elements ( distances, distribution) (string, tower, dense core, empty core) OM orientations PMT size, multiplicities (e.g. large versus small PMTs) (coincidence versus high pulses)  Maximal neutrino effective area (volume) over full parameter space  Best angular resolution for neutrinos  Best energy resolution for neutrinos  Optimal S/B for some standard signals (E -2 ) Optimization criteria

Optimization condition Ideally: Compare various detectors which can be built and operated with the same budget difficult to do Or: Compare detectors with  Same number of OMs  Same number of floors  Same number of total eff. area of PMTs  …. Choice to be made to allow fair comparison

Choice of parameter space Which energy range ? Astronomy  Point sources 1TeV-1PeV  Diffuse flux 10TeV-10PeV  GZK 1EeV-100EeV Particle Physics  Neutralinos10GeV-1TeV Difficult to have a detector with optimal behaviour over 8 orders of magnitude !  Separate optimisations for high/low energies?

Choice of parameter space Which angular range ?  Classic: Upward going hemisphere  Highest energies no atm. muon BG: full sphere  Opacity of Earth: close to horizon  calibration with moon shadow OM arrangements depend on these choices  Downward looking  Antares like  Up/down symmetric  horizontal

Choice of parameter space Which particle type ? Cosmic neutrino fluxes arrive at earth with about 1/3 fraction of e   At high energies earth opacity increases further  fraction Distinction in a neutrino telescope  CC[   (  -  )] long muon track  CC[ e  (  -e,h)], NCnarrow, contained shower  CC[  (  -e,h)] above PeVdouble bang Complementary in Resolution: Energy Angle Muon mediocre excellent Showerexcellentmediocre

Choice of parameter space Site parameters influence result  Absorption length of water  Light diffusion in water  Depth (atmosph. muon background)  Noise light (bioluminescence level) Optimized detector geometry in one site might be different from detector in another site Need feedback from WP5

For the WP2 session at 11/04 in Erlangen I would like to have a short presentation from each institute which intends to participate in this work package. In this presentation you should: - redefine the physics and software projects to which you would like to contribute - describe the current state of this work - estimate possible contributions for the first year of KM3NET - make reference to the "Objectives" and "Milestones" of the contract document (WP2) This round of introduction talks will be followed by presentations of "first results" as some of you have already started to do KM3Net related analyses.

KM3net kickoff meeting Erlangen Date/Time:from Tuesday 11 April 2006 (09:00) to Thursday 13 April 2006 (18:00) Location:Erlangen Description:Details Tuesday 11 April :00->18:00WP2WP2 (Erla ngen ) Tuesday 1 1 April WP2 (14:00->18:00) Loc atio n: Erl ang en 14:00Introduction (20') Paschal Coyle (CPPM) 14:20Status+Plans CEA/DAPNIA (20') Luciano Moscoso 14:40Status+Plans INFN (20') Marco Circella 15:00Status+Plans NIKHEF (20') Els De Wolf (NIKHEF) 15:20Status+Plans Erlangen (20') Rezo Shanidze (University Erlangen) 15:40Status+Plans Great Britain (20') Fabrice Jouvenot (University Liverpool) 16:00Status+Plans Valencia (20') 16:20Status+Plans Greece (20') 16:40 Coffe break 17:00KM3Net Simulations (20') Sebastian Kuch 17:20HESS sources for KM3 (20') Christian Stegmann 17:40Shower reconstruction (20') Ralf Auer | HELPHELP

Organisational Issues Steering committee institute representatives General Mailing list, webpage Physics benchmark fluxes more ambitious? SA=5km2, PMs 10,000 Common software framework-ROOT, C++, java? (rewrite Km3) Adopt antares software as standard (freely available) Monte Carlo generation to sea level (Corsika)-geometry independent Agree on relevant quantities for optimisation – neutrino effective area - neutrino effective volume Optimisation-priority to muons Reconstruction algorithms- geometry independent? (optimise pdfs?) Site specific parameters –wp5 All data to shore vs L1 trigger Calibration simulation-less advanced, more work? -investigate optical positioning (rather than acoustic) Next meeting

Software Framework

Interfaces to other WPs WP1 – Cost Model software WP3 – simulation of front-end costs WP4 – simulation of data filter costs WP5 – site parameters

source Distance (kpc) E (GeV) N μ (km -2 yr -1 ) Reference SNR RX J Sgr A East SNR RX J  10 4  10 5  10 4 ~40 ~140 ~10 Alvarez-Muñiz & Halzen 2002 Costantini astro-ph/ E Flux Sensitivity of the KM3NeT n Telescope  requirement: 10 hits/event  80% duty cycle   flux Very preliminary ! KM3NeT sensitivity estimated for 23 events  flux =  flux / 2

Microquasars: LS5039, LS I= LS5039 observed by HESS Index=2.12±0.15, up to 4 TeV Aharonian et al, astro-ph/ LS I muon type/km 2 /yr Christiansen et al., astro-ph/ severe absorption of >100 GeV gamma-rays (  + starlight  e + e - )  up to a factor 10 to 100 higher initial luminosity severe radiative (synchrotron and Compton) losses  difficult to accelerate electrons to multi-TeV energies Conclusion : TeV gamma-rays of hadronic origin Extrapolation from HESS observation: 3-6 neutrinos/yr/km 2 Aharonian, Montaruli et al., Astro-ph/

Interaction of CRs with Gas Clouds at GC CR interactions in clusters of galaxies with IR photons also detectable DeMarco et al, astro-ph/ AMANDA KM3NET CR density much higher than local density in solar system  evidence for young source of high energy CRs near GC -SNR? Arharonian et al, Nature 2006 neutrino signal from CR interactions detectable in KM3NET- enhancement in direction of GC Candia, Astro-ph/

Measured UHECR flux provides most restrictive limit: - optically thin sources: nucleons from photohadronic interactions escape -CR flux above the ankle (>3 ·10 18 eV) are extragalactic protons with E -2 spectrum  E 2 F < GeV /(cm 2 s sr) Waxman & Bahcall (1999) Magnetic fields and uncertainties in photohadronic interactions of protons can affect the bound, as these effects restrict number of protons able to escape Mannheim, Protheroe & Rachen (2000) CR rate evolves with z Upper Bounds on Extra-Galactic fluxes ICECUBE/KM3 MPR

CR rate evolves with z Extragalactic: Starburst Galaxies Radio observation of starburst galaxies imply a robust lower limit on the extragalactic neutrino background flux ~  wb Loeb, Waxman astro-ph/ M82 -xray M82 -radio Galaxies undergoing large-scale star formation. -strong IR emission -strong radio emission from SNRs Best studied: M82, NGC253 NGC253: TeV detection reported by CANGAROO Possible source of UHECRs Torres, Anchordoqui astro-ph/ Mpc

Detection directe spin-independent cross-section Télescopes a neutrino très compétitive et complémentaire au détection directe ANTARES/KM3: Dark Matter (neutralino) /km3 e.g. mSUGRA model A 0 =0,  >0, tan  =10, M 1/2 =0-800 GeV, M 0 = GeV +  wimp h 2 < 1 + LEP constraint efficient capture in the sun  best sensitivity to spin dependent scattering Neutrino telescope flux de soleil Bertin, Nezri Orloff 02

Dark Matter – Intermediate Mass Black Holes Mini-spikes around IMBHs M imbh =10 5 M soleil Sources concentrated towards galactic centre Sensitive only to annihilation cross-section-complementary To sun search KM3NET: 10 sources with >20 events/year Bertone hep-ph/

Armengaud, Sigl APPEC ROADMAP

Tau neutrinos  10 4 ly Flavour Ratios: Experimental Signatures E = 10 TeV E = 375 TeV  ~ 300m for 10 PeV   e  Icecube simulation Beacom et al., hep-ph/ v3 sept 2005 Horizontal Muon Electron Shower Tau (lolipop, double bang)

Particle Physics: Lorentz Violation, Decoherence Hooper et al., hep-ph/ Lorentz violation Pion source Decoherence neutron source Lorentz violation Atmospheric oscillations Anchordoqui et al., hep-ph/ E 2 dependence icecube Neutron source (n  pe e ) may explain CR correlations from GC & Cygnus Anchordoqui et al., hep-ph/ From angular depencence of e /  ratio Sudden onset VERY LONG BASELINE

Particle Physics: Modification of  ( N) at High Energies KK Gravitons TeV string resonances  scopic black holes p-Brane production instantons increased cross-section e.g. angular distribution above 500 TeV in model of BH production astro-ph/ SM xmin=1 xmin=3

Amanda, Baikal AUGER  Anita Amanda,Antare s, Baikal, Nestor 2012 km 3 Auger + new technologies 2004 RICE GLUE Flux Diffus: Limites et Sensibilités RICEAGASA C. Spiering, J. Phys. G 29 (2003) 843 Gamma Ray Bursts (Waxman & Bahcall) Extragalactic  p sources (Mannheim et al.) AGN Jets (Mannheim) Topological defects (Sigl) GZK neutrinos (Rachen & Biermann) WB98