Outline Chapter 8a The Nucleus 8-1. Rutherford Model of the Atom 8-2. Nuclear Structure 8-3. Radioactive Decay 8-4. Half-Life 8-5. Radiation Hazards 8-6.

Slides:



Advertisements
Similar presentations
Chapter 11 Radioactive Elements.
Advertisements

20th Century Discoveries
Nuclear Chemistry – Radioactive Decay
Radioactivity and Nuclear Reactions
Lecture 14 Fission and Fusion. Elementary Particles. Nuclear Fission Nuclear Fusion Fundamental Interaction (Forces) Elementary Particles.
Radioactivity.
CHAPTER 21 NUCLEAR CHEMISTRY. I. Ordinary Chemical Reactions A. Bond breaking, bond forming, only outer electrons of the atoms are disturbed. B. Nuclei.
Nuclear Chemistry Chapter Nuclear Chemistry Nuclear Chemistry- the study of reactions involving changes in atomic nuclei. Importance Disadvantages.
Radioactivity and Nuclear Reactions
NUCLEAR CHEMISTRY. Henri Becquerel Discovers natural radioactivity FYI: Historical Perspective.
4 Basic Forces of Nature strong force = very strong, but very short-ranged. It acts only over ranges of order centimeters and is responsible for.
Nuclear / Subatomic Physics Physics – Chapter 25 (Holt)
Chapter 19a Radioactivity and Nuclear Energy. Chapter 19 Table of Contents Radioactive Decay 19.2 Nuclear Transformations 19.3 Detection of Radioactivity.
1 Atomic Physics. 2 In 1896 Henri Becquerel discovered that certain uranium compounds would fog photographic plates as if exposed to light. He discovered.
Chapter 16 – Nuclear Energy Alternate to Fossil Fuels.
Objectives To learn the types of radioactive decay
Radioactivity.
Chapter 9 pages And Chapter 18 pages
Chapter 28 Nuclear Chemistry
Atom and Nucleus. Radioactivity. Nuclear Energy.
Atomic Structure Chapter 4
Fundamentals of Radiation
 Remember that the nucleus is comprised of the two nucleons, protons and neutrons.  The number of protons is the atomic number.  The number of protons.
Nuclear Chemistry. Two main forces in nucleus  Strong nuclear force—all nuclear particles attract each other  Electric forces—protons repulse each other.
Radioactivity and Nuclear Reactions. How Did It All Happen? Radioactivity 4.16.
Dr. Bill Pezzaglia Nuclear Physics Updated: 2010May17 Modern Physics Series 1 INCOMPLETE DRAFT.
Subatomic Physics Chapter Properties of the Nucleus The nucleus is the small, dense core of an atom. Atoms that have the same atomic number but.
Nuclear Reactions.
Chapter 22 Nuclear Chemistry. Sect. 22-1: The Nucleus Nucleons – collective name for protons & neutrons Nuclide – an atom Notation: either radium – 228.
Intro to Nuclear Chemistry
Chapter 19a Radioactivity and Nuclear Energy. Chapter 19 Table of Contents Copyright © Cengage Learning. All rights reserved Radioactive Decay 19.2.
1 Chapters 18 NUCLEAR CHEMISTRY. 2 CHAPTER OUTLINE  Atomic Structure Atomic Structure  Radioactivity Radioactivity  Alpha Decay Alpha Decay  Beta.
Nuclear Power. Locations of Nuclear Power plants in the US.
Chapter 9: Nuclear Changes
Radioactivity SPS3. Students will distinguish the characteristics and components of radioactivity. Differentiate among alpha and beta particles and gamma.
Lecture 26 Atomic Structure and Radioactivity Chapter 29.1  29.4 Outline Properties of the Atomic Nucleus Binding Energy Radioactivity and Radioactive.
Nuclear Chemistry Remember: Isotope = vary in number of neutrons, so mass of isotopes are different Written as: C-12 or 12 6 C.
Nuclear Radiation > Nuclear Radiation & Transformations.
Protons and neutrons are called nucleons. An atom is referred to as a nuclide. An atom is identified by the number of protons and neutrons in its nucleus.
Nuclear Chemistry Chapter 25. What do you think of when you hear Nuclear Chemistry?
Nuclear Radiation GPS: SPS3. Students will distinguish the characteristics and components of radioactivity. a. Differentiate among alpha and beta particles.
Spontaneous emission of radiation when the nucleus of an atom breaks down to form a different element.
Physics Chapter 30 “Nuclear Physics”. The Composition and Structure of the Nucleus In your study of atomic structure you investigated experiments which.
Radioactivity Nucleus – center of the atom containing protons and neutrons –How are the protons and neutrons held together? Strong Force - an attractive.
Radioactive Nuclide Nuclide which is unstable. It emits radiation & changes into another kind of atom.
Radioactive Decay.
Intro to Nuclear Chemistry
P. Sci. Unit 12 Nuclear Radiation Chapter 10. Essential Questions 1)Identify four types of nuclear radiations and compare and contrast their properties.
Alpha and Beta Decay. Nuclear Reactions 1.Occur when nuclei emit particles and/or rays. 2.Atoms are often converted into atoms of another element. 3.May.
Nuclear Chemistry Unit 4. History Wilhelm Conrad Roentgen ( ) Wilhelm Conrad Roentgen ( ) Awarded a Nobel Prize in Physics in 1901 Awarded.
Radioactivity and Nuclear Decay Test on Friday March 1.
Unit 2 Notes: Atomic Theory Chem. Early models of the atom Aristotle- thought everything was made of earth, fire, water & air Democritus- matter made.

Ch. 28 Nuclear Chemistry C. Smith. I. Nuclear Radiation A. Radioactivity 1. Radioisotopes are unstable isotopes that have unstable nuclei. 2. They gain.
Honors Physics Chapter 25: Subatomic Physics.  Nucleons  Protons and Neutrons that Make Up the Nucleus  Atomic Number (Z)  # of Protons  Atomic Mass.
RADIOACTIVITY REVIEW. REVIEW 1. Review what the structure of the atom is, particularly the nucleus. Protons (+) and neutrons (o) in the nucleus Electrons.
The Nucleus Chapter 8 The Atom and Nucleus Atoms are the smallest particles of ordinary matter. Every atom has a central core called the nucleus. The.
P. Sci. Unit 12 Nuclear Radiation Chapter 10. Nuclear Radiation Strong Nuclear force – the force that holds protons and neutrons together. Remember that.
Created by C. Ippolito May 2007 Nuclear Chemistry Objectives: 1. E xplain how unstable nuclei release energy 2. D escribe the three main types of nuclear.
Chemistry - Unit 13.  Discovery of Radioactivity  In 1895 Wilhelm Roentgen found that invisible rays were emitted when electrons bombarded the surface.
Nuclear Chemistry. Radioactivity  Nuclear Reactions – reactions in which the nuclei of unstable isotopes (radioisotopes) gain stability by undergoing.
Nuclear Chemistry Chapter 21B
Chapter 4: Atomic Energy
Chapter 4: Atomic Energy
Nuclear Reactions.
NUCLEAR CHEMISTRY.
Nuclear Chemistry Chapter 21B
Radioactive Decay, Fission, and Fusion
Nuclear Chemistry Chapter 21B
NUCLEAR CHEMISTRY.
Presentation transcript:

Outline Chapter 8a The Nucleus 8-1. Rutherford Model of the Atom 8-2. Nuclear Structure 8-3. Radioactive Decay 8-4. Half-Life 8-5. Radiation Hazards 8-6. Units of Mass and Energy

8-1. J.J. Thompson’s Plum Pudding Model of the Atom In 1898, British physicist J. J. Thompson described atoms as positively charged lumps of matter with electrons embedded in them.

8-1. Rutherford Model of the Atom In 1911, an experiment suggested by British physicist Ernest Rutherford shows that alpha particles striking a thin metal foil are deflected by the strong electric fields of the metal atom's nuclei.

8-2. Nuclear Structure The nucleus of ordinary hydrogen is a single positively charged proton; other nuclei contain electrically neutral neutrons as well as protons. The number of protons is the atomic number.

8-2. Nuclear Structure Isotopes are atoms of the same element that differ in the number of neutrons in their nuclei. A nucleus with a particular composition is called a nuclide and is represented by Z X where X = chemical symbol, Z = atomic number, and A = mass number or the number of protons and neutrons in the nucleus. A nucleon is a neutron or proton; the mass number of a nucleus is the number of nucleons (protons and neutrons) it contains. A

Isotope Notation How many protons, neutrons and electrons in each of the following: protons neutrons electrons 23 Na 14 N 38 Ar 35 Cl 36 Cl Fe Protons Neutrons Electrons

8-3. Radioactive Decay In 1896, Henri Becquerel discovered that uranium gives off a penetrating radiation, a property called radioactivity. Soon after Becquerel's discovery, Pierre and Marie Curie discovered two more radioactive elements: polonium and radium. Radioactive decay occurs when a nucleus emits particles or high frequency em waves.

Band of Stability The stable nuclides have approximately equal numbers of protons and neutrons (N/Z ratio = 1) in the lighter elements (Z = 1 to 20) and more neutrons than protons in the heavier elements (N/Z ratio > 1). 15- Figure 15.4

8-3. Radioactive Decay

Nuclear Decay

After Decay When an atomic nucleus is unstable, decay brings the nucleus to a more stable state The final product of nuclear decay is a stable element This may require numerous decay steps –Uranium 238 requires 8 alpha decays and 6 beta decays to eventually become Lead 206, a stable element

Discovery of Po and Ra Marie Skłodowska Curie ( ) Marie, and her husband Pierre, analyzed a ton of Uranium ore. After removing the uranium the radioactivity increased. This led to the discovery of Polonium, more radioactive than uranium, named after here home country of Poland. After removing the Polonium the radioactivity increased again. This led to the discovery of a small amount in their hand of Radium, so radioactive that it glowed in the dark. (1943 Marie Currie Movie 2hrs)

8-4. Half Life The half-life of a radionuclide (radioactive nuclide) is the time needed for half of an original sample to decay.

8-5. Radiation Hazards The SI unit of radiation dosage is the sievert (Sv); 1 Sv is the amount of radiation having the same biological effects as those produced when 1 kg of body tissue absorbs 1 J of x- rays or gamma rays. Maximum dose is 20 mSv per year.

Predicted Indoor Radon Levels 15- red zones-greater than 4 pCi/L orange zones-between 2 and 4 pCi/L yellow zones-less than 2 pCi/L Santa Barbara/ Ventura Counties highest levels

Preventing Radon in Homes 15-

Fig.8.6 A radionuclide tracer can be seen here. The different colors are different amount of tracer absorption. Cancerous bone absorbs more tracer. The white spot indicates a tumor.

8-6. Units of Mass and the Electronvolt The atomic mass unit (u) is the standard unit of atomic mass: 1 atomic mass unit = 1 u = 1.66 x kg The electronvolt (eV) is the energy unit used in atomic physics: 1 electronvolt = 1 eV = 1.60 x J The megaelectronvolt (MeV) is equal to 1 million eV: 1 megaelectronvolt = 1 MeV = 10 6 eV = 1.60 x J The energy equivalent of a rest mass of 1 u is 931 MeV.

8-7. Binding Energy All atoms have less mass than the combined masses of the particles of which they are composed. The energy equivalent of the missing mass of a nucleus is called the binding energy; the greater the binding energy of a nucleus, the more the energy is needed to break it apart.

8-8. Binding Energy per Nucleon The binding energy per nucleon is found by dividing the total binding energy of the nucleus by the number of nucleons (protons and neutrons) it contains; the greater the binding energy per nucleon, the more stable the nucleus.

8-9. Nuclear Fission A chain reaction is a series of fission reactions spreading through a mass of an unstable radionuclide such as uranium. When a nucleus undergoes fission, two or three neutrons are released and can cause other nuclei to split and begin a chain reaction. The first chain reaction was demonstrated by the Italian physicist Enrico Fermi in Chicago in Lise Meitner ( ) Enrico Fermi ( )

8-10. How a Nuclear Reactor Works A nuclear power plant transforms nuclear energy into electricity. The chain reaction within a nuclear reactor is controlled by a moderator which slows down neutrons. Reactors use enriched uranium as a fuel.

Nuclear fuel R Super heated water (enclosed) LAST, and VERY IMPORTANT is the COOLING of the whole system. This is the ONLY WATER THAT IS NOT COMPLETELY ENCLOSED. Usually comes from a nearby lake or river, recirculated back into the river… NUCLEAR DECAY PRODUCES HEAT ENCLOSED water circulates around fuel—gets HOT HOT HOT More ENCLOSED water is heated to boiling, producing steam, which turns a turbine—causing the coils of an ELECTRIC GENERATOR to rotate---remember Ampere’s law?

8-11. Plutonium When nonfissionable U-238 captures a fast neutron, it eventually forms the fissionable nuclide of plutonium, Pu-239, which can support a chain reaction. Plutonium is a transuranium element, meaning that it has an atomic number greater than the 92 of uranium. The fissionable plutonium produced in a uranium-fueled reactor can be used as a fuel or in nuclear weapons. Little Boy Fat Man

25 Nuclear Bombs Trinity Bomb Test First nuclear bomb 824/trinity_nuclear_weapon_test/

26 Nuclear Bombs Hiroshima bomb- Little Boy Equivalent to kilotons of TNT 70,000 killed immediately and 70,000 died afterward. Half from blast, a third radiation and rest from radioactivity Hiroshima before the bomb.Hiroshima after the bomb. Enola Gay

27 Hiroshima after the blast. Imprint of sitting person from gamma ray incineration. The sky turned pink from gamma rays and abut 15 seconds later the shock wave hit.

28 Nagasaki-Fatman bomb Equivalent to kilotons of TNT. About 20,000 killed immediately and another 20,000 died afterward. A military target that contained a weapons factory.

A Nuclear World? Nuclear energy generates about 21 percent of the electricity produced in the United States. Questions of safety, costs, and nuclear waste disposal have halted construction of nuclear reactors in the United States.

A Nuclear World? Nuclear Power plants locations throughout the world.

Fig Disposal of nuclear wastes is a problem. Here a tunnel is being prepared to store nuclear waste in Yucca Mountain in Nevada.

8-12. Nuclear Fusion. Here an experimental fusion reactor at Princeton University. This uses powerful magnetic fields to confine the fusion material. This is called a tokamak reactor based on a Soviet reactor.

8-12. Nuclear Fusion. Nuclear fusion produces tremendous quantities of energy and has the potential of becoming the ultimate source of energy on earth. Pons and Fleishmann at the University of Utah

8-13. Antiparticles An antiparticle has the same mass and general behavior as its corresponding elementary particle, but has a charge of opposite sign and differs in certain other respects. When an antiparticle and its corresponding elementary particle come together, they undergo annihilation, with their masses turning entirely into energy. In the process of pair production, a particle-antiparticle pair materializes from energy. Quarks make up protons/neutrons.

8-14. Fundamental Interactions 1. The strong interaction, which holds protons and neutrons together to form atomic nuclei. 2. The electromagnetic interaction, which gives rise to electric and magnetic forces between charged particles. 3. The weak interaction, which, by causing beta decay, helps determine the compositions of atomic nuclei. 4. The gravitational interaction, which is responsible for the attractive force one mass exerts on another.

8-15. Leptons and Hadrons Leptons, which are not affected by the strong interaction, have no internal structure. Electrons are leptons. Neutrinos are leptons that have no charge and very little mass. Hadrons, which are affected by the strong interaction, are composed of quarks; protons and neutrons are hadrons.

8-15. Leptons and Hadrons Physics is trying to bring all theories together into one THEORY OF EVERYTHING. Large Hadron Collider at the CERN laboratory between France and Switzerland, the most powerful particle accelerator in the world.