Introduction Introduction Rapid nucleosynthesis – models and sites Rapid nucleosynthesis – models and sites R-process under high neutron environment R-process.

Slides:



Advertisements
Similar presentations
Critical Nuclear Physics Needs for Astrophysical Nucleosynthesis Studies James W. Truran Physics Division Argonne National Laboratory and Department of.
Advertisements

NUCLEOSYNTHESIS, THE R- PROCESS, ABUNDANCES AND JIM TRURAN J. J. COWAN University of Oklahoma JINA Frontiers 2010 : Workshop on Nuclear Astrophysics Yerkes.
The Evolution and Explosion of Massive Stars Nuclear Physics Issues S. E. Woosley, A. Heger, T. Rauscher, and R. Hoffman
The r-Process Nearly four decades have passed since the r-process was postulated. The nature of the distribution of heavy elements in the solar system.
3 rd Annual INPP Meeting 17/6/2013 M. Axiotis Institute of Nuclear & Particle Physics NCSR “Demokritos” New Detector at the Tandem Laboratory of INPP for.
S-Process in C-Rich EMPS: predictions versus observations Sara Bisterzo (1) Roberto Gallino (1) Oscar Straniero (2) I. I. Ivans (3, 4) and Wako Aoki, Sean.
I. Dillmann Institut für Kernphysik, Forschungszentrum Karlsruhe KADoNiS The Sequel to the “Bao et al.” neutron capture compilations.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
1 The origin of heavy elements in the solar system each process contribution is a mix of many events ! (Pagel, Fig 6.8)
1 The origin of heavy elements in the solar system each process contribution is a mix of many events ! (Pagel, Fig 6.8)
The origin of heavy elements in the solar system
S & R Process Matt Penrice Astronomy 501 University of Victoria.
Outline  Introduction  The Life Cycles of Stars  The Creation of Elements  A History of the Milky Way  Nucleosynthesis since the Beginning of Time.
1 The origin of heavy elements in the solar system each process contribution is a mix of many events ! (Pagel, Fig 6.8)
New Constraints on Neutron- Capture Nucleosynthesis Processes Inese I. Ivans California Institute of Technology Hubble Fellows Symposium April 7, 2005.
Production of elements near the N = 126 shell in hot fusion- evaporation reactions with 48 Ca, 50 Ti, and 54 Cr projectiles on lanthanide targets Dmitriy.
Futoshi Minato JAEA Nuclear Data Center, Tokai Theoretical calculations of beta-delayed neutrons and sensitivity analyses 1.
1 Decay studies of r-process nuclei Karl-Ludwig Kratz - Max-Planck-Institut für Chemie, Mainz, Germany - Department of Physics, Univ. of Notre Dame, USA.
Weak Interactions and Supernova Collapse Dynamics Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Erice, September 21,
The FAIR Chance for Nuclear Astrophysics Elemental Abundances Core-collapse Supernovae The neutrino process The r-process nuclei in -Wind Neutron Stars.
Microscopic-macroscopic approach to the nuclear fission process
Aim  to compare our model predictions with the measured (Dubna and GSI) evaporation cross sections for the 48 Ca Pb reactions. Calculations.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Dietrich Habs ELI Photonuclear Bucharest, Feb 2, D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik A Laser-Accelerated.
Studies of r-process nuclei with fast radioactive beams Fernando Montes National Science Superconducting Cyclotron Joint Institute for Nuclear Astrophysics.
A new approach to estimating the probability for  delayed neutron emission E. A. McCutchan A.A. Sonzogni T.D. Johnson National Nuclear Data Center Brookhaven.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Properties of nuclear matter in supenova explosions Igor Mishustin Frankfurt Institute for Advanced Studies Johann Wolfgang Goethe University Frankfurt.
Abundance patterns of r-process enhanced metal-poor stars Satoshi Honda 1, Wako Aoki 2, Norbert Christlieb 3, Timothy C. Beers 4, Michael W.Hannawald 2.
Opportunities for synthesis of new superheavy nuclei (What really can be done within the next few years) State of the art Outline of the model (4 slides.
Astrophysical, observational and nuclear-physics
Astrophysical p-process: the synthesis of heavy, proton-rich isotopes Gy. Gyürky Institute of Nuclear Research (ATOMKI) Debrecen, Hungary Carpathian Summer.
Neutrino-nucleus interaction and its role in supernova dynamics and nucleosynthesis Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität.
Clean Beams at ISOL Facilities GSI Workshop on Astrophysics and Nuclear Structure, January 15-21, 2006 in Hirschegg, Austria O.Arndt, H. Frånberg, C.Jost,
Lecture 15 Explosive Nucleosynthesis and the r-Process.
Microscopic Modeling of Supernova Matter Igor Mishustin FIAS, J. W. Goethe University, Frankfurt am Main, Germany and National Research Center “Kurchatov.
Study of the s-process in low mass stars of Galactic disc metallicity
1/15 The r-Process in the High- Entropy-Wind of Type II SNe K. Farouqi Inst. für Kernchemie Univ. Mainz, Germany Frontiers Workshop August
Three-body radiative capture reactions in astrophysics L.V. Grigorenko K.-H. Langanke and M. Zhukov FLNR, JINR, Dubna and GSI, Darmstadt.
The role of fission in the r-process nucleosynthesis Needed input Aleksandra Kelić and Karl-Heinz Schmidt GSI-Darmstadt, Germany
Production and beta decay lifetimes of heavy neutron-rich nuclei approaching the r-process path Teresa Kurtukian-Nieto Universidad de Santiago de Compostela.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
Role of the fission in the r-process nucleosynthesis - Needed input - Aleksandra Kelić and Karl-Heinz Schmidt GSI-Darmstadt, Germany What is the needed.
Galactic Evolution Workshop NAOJ Sachie Arao, Yuhri Ishimaru (ICU) Shinya Wanajo(Riken) Nucleosynthesis of Elements heavier than Fe through.
Microscopic-macroscopic approach to the nuclear fission process Aleksandra Kelić and Karl-Heinz Schmidt GSI-Darmstadt, Germany
Selected Topics in Astrophysics
Improving systematic predictions of  -delayed neutron emission probabilities E. A. McCutchan A.A. Sonzogni T.D. Johnson NNDC D. Abriola IAEA M. Birch,
Nuclear Structure Data Needs Filip G. Kondev Collaborative meeting, Trento, May 28 –June 1, 2007 Outline  What kind of nuclear structure.
What nuclear multifragmentation reactions imply for modifications of the symmetry and surface energy in stellar matter Nihal Buyukcizmeci 1,2, A. Ergun.
Observation of new neutron-deficient multinucleon transfer reactions
Nucleosynthesis in decompressed Neutron stars crust matter Sarmistha Banik Collaborators: Smruti Smita Lenka & B. Hareesh Gautham BITS-PILANI, Hyderabad.
Determining the rp-Process Flow through 56 Ni 56 Ni is a Waiting Point and imposes a delay Decay Lifetime: 2.3x10^4 s ; Burst Time: 10 – 100 s Largest.
Ryohei Fukuda 1, Motoaki Saruwatari 1, Masa-aki Hashimoto 1, Shin-ichiro Fujimoto 2 1 Department of Physics, Kyushu University, Fukuoka 2 Department of.
1 Atomic Mass Evaluation Meng WANG (王猛) CSNSM-CNRS, France MPIK-Heidelberg, Germany IMP-CAS, China 5 th FCPPL workshop.
The origin of heavy elements in the solar system
György Gyürky Institute for Nuclear Research (Atomki)
R-PROCESS SIGNATURES IN METAL-POOR STARS
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
NUCLEOSYTHESIS OF HEAVY ELEMENTS IN THERMONUCLEAR EXPLOSIONS “Mike”, “Par” and “Barbel” Yu. S. Lutostansky, V. I. Lyashuk. National Research.
p-process in SNIa: new perspectives R. Gallino C. Travaglio
Rebecca Surman Union College
Mysterious Abundances in Metal-poor Stars & The ν-p process
Fission rates and transactinide formation in the r-process. Igor Panov
Aleksandra Kelić GSI – Darmstadt
The role of fission in the r-process nucleosynthesis
Elastic alpha scattering experiments
Spontaneous fission rates
S. Chiba, H. Koura, T. Maruyama (JAEA)
FISSION BARRIERS OF EXOTIC NUCLEI
Presentation transcript:

Introduction Introduction Rapid nucleosynthesis – models and sites Rapid nucleosynthesis – models and sites R-process under high neutron environment R-process under high neutron environment Fission in the r-process Fission in the r-process (n,f)- and  -delayed fission (n,f)- and  -delayed fission fission cycling fission cycling sf – predictions sf – predictions Theoretical Abundance of heavy nuclei Theoretical Abundance of heavy nuclei Superheavy nuclei and cosmochronometers Superheavy nuclei and cosmochronometers Conclusion Conclusion Models for spontaneous fission of heavy nuclei and nucleosynthesis of cosmo-chronometers in the r-process. Panov Igor (ITEP, NGU) Panov Igor (ITEP, NGU)

s-, r- processes SHE

nucleosynthesis beyond Fe-peak – r-process and s-process

4 r-process and s-process paths r-process and s-process paths supernovae NSM J.Truran winds Nuclear data for the r-process: ~6000 nuclei are involved 900 nuclei hasT12 > 1 hour

нуклеосинтез в реакциях с нейтронами (s-процесс): Pd Ag Cd  n  <<  n n <10 12   Z=46 Z=47 Z= --

нуклеосинтез в реакциях с нейтронами (r-process): Ag Cd In  n    (s-процесс: n  <<   n n >10 22 n n <10 12   Z=47 Z=48 Z= Waiting point

SnII,  ~  exp(-t/  ),  < 10ms SnII,  ~  0 exp(-t/  hyd ),  hyd < 10ms Merging of close binaries: NSNS, NSBH high n/seeds > 150, T 9 150, T 9 < 1, Y e < 0.1 Neutrino-induced r-process 4 He(, ’ n) 3 He Explosions on the NS surface Hot -wind, high entropy wind Hot -wind, high entropy wind – thermonuclear Sne, jets ? – thermonuclear Sne, jets ? Other objects and processes? 2. Main conditions for the r-process: (seeds); free neutrons; n/seeds; freezout 2. Main conditions for the r-process: (seeds); free neutrons; n/seeds; freezout Wasserburg, G., Busso, M., & Gallino, R. 1996, ApJ, L109 2 objects /scenario: Main r-process - Weak r-process 2 objects /scenario: Main r-process - Weak r-process

weak r-process SNIa - Truran & Cowan He-flash Blinnikov, Panov, Ptytsin, Chechetkin 1995 SNII neutrino-induced r-process -Nadyozhin, Panov, Blinnikov A&A, 335, 1998 NSM-model, main r-process? Freiburghaus et al., AJL 525, 1999 NS+BH Janka, Wanajo, Blinnikov, S. I., et al. Pazh, 10, (1984) 422 Lattimer et al., AJ 213, 225 (1977)

fission 3. R-process under high neutron density environment – in NSM Observed N r

 fission  decay        P P kn (k=0,1,2,3)   Network calculations of the r-process (n,  ) (  n) 10

Nuclear data for the r-process (up to 6000 nuclei ) beta-decay,  Cross-sections and reaction rates (n,g), (n,f),.. beta-delayed processes P in, P  df spontaneous fission, sf Mass distribution of fission products Alpha-decay, Nuclear masses and fission barriers Data base of common usage JINA - Joint Institute of Nuclear Astrophysics JINA - Joint Institute of Nuclear Astrophysics

Seeger, Fowler, et al. (1965) ; Ohnishi (1977) Thielemann, Metzinger, Klapdor, Zt.Phys., A309 (1983) 301. P  df =100% Goriely et al. Astron. Astrophys. 346, 798–804 (1999) s.f. (Swiatecky) Panov et al., Nucl. Phys. A, 718 (2003) 647. (n,fission) vs P  df I.Korneev et al. NIC-2006; Astronomy Letters, 66 (2008) 131 Y ff (Z,A) Kelic, et al., Phys. Lett. B. 616 (2005) 48 Y ff (Z,A) I.V. Panov, E. Kolbe, F.-K. Thielemann, T. Rauscher, B. Pfeiffer, K.-L. Kratz. NP A 747 (2005) 633 (n,fission) (n,  ) P  df G.Martinec-Pinedo et al, Progress in Particle and Nuclear Physics, 59 (2007) 199. (n,fission) vs P  df Y.-Z. Qian, Astron. J. 569 (2002), p. L103.  induced fission Kolbe, Langanke, Fuller. Phys Rev Lett  induced fission. I. Petermann et. al. NIC-2008; G.Martinec-Pinedo et al, Progr. in Particle and Nucl. Phys., 59 (2007) : (n,fission), P  df, s.f.,  induced f. Panov et al. AA 2010 Panov et al. AA 2010 (n,fission) and (n,  ) Petermann Martinec-Pinedo Langanke Panov Thielemann SHE AA2012 Panov, I.Korneev, Yu. Lutostansky, F.-K. Thielemann. Yad.Fiz P  di fission in the r-process and rates calculations 4. fission in the r-process and rates calculations

 nf, n  and  rates comparison for U (left) and Cm (right) n , nf,  n – Hauser-Feshbach predictions ,  df, - QRPA 15

6. Fission cycling during r-process for NSM conditions 6. Fission cycling during r-process for NSM conditions (t-duration time of the r-process; t=0 - initial composition) Neutron star mergers modelling: Rosswog et al R-process: Panov I., Thielemann F.-K. AL, 30 (2004) 711

6. Fission cycling – fission fragments are involved in the r-process as new seeds

I.Petermann, A.Arcones, A.Keli´c, K.Langanke, G.Martínez-Pinedo, W.Schmidt, K-H.Hix, I. Panov, T. Rauscher, F.-K. Thielemann, N.Zinner, NIC-2008;

R=∫ i (t) / ∑ i ∫ i (t)dt

: B f Sn > 0. 20

7. Spontaneous fission rates Lg( sf ) ~ B f (Frankel&Metropolis,1947) : Lg( sf ) ~ B f (Frankel&Metropolis,1947) : Lg( sf ) = 33,3-7,77B f (exp) (1) Lg( sf ) = 33,3-7,77B f (exp) (1) Lg( sf ) =50,127-10,145B f (etfsi) (2) Lg( sf ) =50,127-10,145B f (etfsi) (2) Lg( sf ) = -1146,4 + 75,3Z 2 /A – 1,638(Z 2 /A) 2 + 0,012(Z 2 /A) 3 -(7,24 -0,095Z 2 /A)B f (3) Lg( sf ) = -1146,4 + 75,3Z 2 /A – 1,638(Z 2 /A) 2 + 0,012(Z 2 /A) 3 -(7,24 -0,095Z 2 /A)B f (3) Zagrebaev, Karpov 2012 (Swiatecki, 1957) Zagrebaev, Karpov 2012 (Swiatecki, 1957) Macro-micro model, Smolanchuk et al (4) Macro-micro model, Smolanchuk et al (4)

B f ETFSI- Mamdouh et al., NP 2001

R-process path and abundances Y A (Z,N) when duration  r ~ 10s

n n < cm -3, n  <  Squares – most abundant nuclei White dots: 10% < P  df < 90%

25 n n < 10 12, n  << 

JINR => Zagrebaev et al. Phys. Rev. C 84, (2011) A max (progenitors) ≈280

A(progenitors) ~ < 260

Final abundances Y Final abundances Y A,  R ~ 0.4 – years

Final abundance Y A when s.f. rates ~ f(B f )

Final Y A when s.f.rates - macro-micro model 30

Conclusions Conclusions It was shown that s.f. model applied to the r- process nucleosynthesis strongly influe in first turn on yields of nuclei-cosmochronometers It was shown that s.f. model applied to the r- process nucleosynthesis strongly influe in first turn on yields of nuclei-cosmochronometers Among tested models of spontaneous fission phenomenological model based on Swiatecki model and on macro-micro model predictions gave the better results in calculation of yields of nuclei–cosmochronometers Among tested models of spontaneous fission phenomenological model based on Swiatecki model and on macro-micro model predictions gave the better results in calculation of yields of nuclei–cosmochronometers Additionally to 232/235, 235/238 pairs of nuclei- cosmochronometers, pairs 232/244 or 238/244 can be considered Additionally to 232/235, 235/238 pairs of nuclei- cosmochronometers, pairs 232/244 or 238/244 can be considered The detailed investigation of decay chain is needed The detailed investigation of decay chain is needed

Thank you ! Participants for attention Participants for attention Blinnikov, Dolgov, Korneev, Thielemann for collaboration Blinnikov, Dolgov, Korneev, Thielemann for collaboration

Fission cycling – fission fragments are involved in the r-process as new seeds

B f TF Myers, Swiatecky 1999

Map of nuclei and field of rates

o - “солнечная” распространенность элементов синим цветом – расчет для сценария слияния нейтронных звезд в двойной системе ( Панов, Корнеев и Тилеманн. Письма в АЖ, т.34, 2008;)

Model, SS and Model, SS and metal-poor halo star CS