Study of Weakly Bound Nuclei with an Extended Cluster-Orbital Shell Model Hiroshi MASUI Kitami Institute of Technology, Kitami, Japan K. Kato Hokkaido.

Slides:



Advertisements
Similar presentations
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Advertisements

Spectroscopy at the Particle Threshold H. Lenske 1.
Nicolas Michel Importance of continuum for nuclei close to drip-line May 20th, 2009 Description of drip-line nuclei with GSM and Gamow/HFB frameworks Nicolas.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
Testing shell model on nuclei
8 He における ダイニュートロン形成と崩 れ 2013/7/27 RCNP 研究会「核子・ハイペロン多体系におけるクラスター現象」 1 Department of Physics, Kyoto University Fumiharu Kobayashi Yoshiko Kanada-En’yo arXiv:
Dineutron formation and breaking in 8 He th Sep. The 22nd European Conference on Few-Body Problems in Physics 1 Department of Physics, Kyoto University.
Unified Description of Bound and Unbound States -- Resolution of Identity -- K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (2)
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
Charge radii of 6,8 He and Halo nuclei in Gamow Shell Model G.Papadimitriou 1 N.Michel 6,7, W.Nazarewicz 1,2,4, M.Ploszajczak 5, J.Rotureau 8 1 Department.
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
1 10/15/2015 Cuie Wu School of Physics, Peking University Neutron removal reactions of 17 C Cuie Wu et al., JPG31(2005)39.
Yu-Gang Ma 18th Few Body Conference, 2006, Santos, Brazil Nucleon-Nucleon momentum correlation functions induced by the radioactive beams Yu-Gang Ma Shanghai.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
1 New formulation of the Interacting Boson Model and the structure of exotic nuclei 10 th International Spring Seminar on Nuclear Physics Vietri sul Mare,
クラスター・シェル競合の新展開 板垣 直之 ( 京都大学基礎物理学研究所 ). Shell structure; single-particle motion of protons and neutrons decay threshold to clusters Excitation energy.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
FB181 Dynamics of Macroscopic and Microscopic Three-Body Systems Outline Three-body systems of composite particles (clusters) Macroscopic = Use of fewer.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
RCNP.08 Breakup of halo nuclei with Coulomb-corrected eikonal method Y. Suzuki (Niigata) 1.Motivation for breakup reactions 2.Eikonal and adiabatic approximations.
Cluster-shell Competition in Light Nuclei N. Itagaki, University of Tokyo S. Aoyama, Kitami Institute of Technology K. Ikeda, RIKEN S. Okabe, Hokkaido.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Anomalous two-neutron transfer in neutron-rich Ni and Sn isotopes studied with continuum QRPA H.Shimoyama, M.Matsuo Niigata University 1 Dynamics and Correlations.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Cluster aspect of light unstable nuclei
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
Coulomb Breakup and Pairing Excitation of Two-Neutron Halo Nucleus 11 Li Niigata University S. Aoyama RCNPT. Myo Hokkaido UniveristyK. Kato RikenK. Ikeda.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
The Coulomb dissociation of 14Be 宋玉收 哈尔滨工程大学 上海.
Effect of tensor on halo and subshell structure in Ne, O and Mg isotopes Chen Qiu Supervisor: Prof. Xian-rong Zhou Xiamen University April. 13, 2012.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
Fusion of light halo nuclei
Nicolas Michel CEA / IRFU / SPhN / ESNT April 26-29, 2011 Isospin mixing and the continuum coupling in weakly bound nuclei Nicolas Michel (University of.
Reaction cross sections of carbon isotopes incident on proton and 12 C International Nuclear Physics Conference, Tokyo, Japan June 3-8, 2007 W. Horiuchi.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Structure of light Λ hypernuclei Emiko Hiyama (RIKEN)
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
Structure and reactions at the dripline with coupled-cluster theory. Gaute Hagen (ORNL) Collaborators: Thomas Papenbrock (UT/ORNL) Morten Hjorth-Jensen.
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Cluster-Orbital Shell Model と Gamow Shell Model Hiroshi MASUI Kitami Institute of Technology Aug. 1-3, 2006, KEK 研究会 「現代の原子核物理 ー多様化し進化する原子核の描像ー」
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
Systematic analysis on cluster components in He-isotopes by using a new AMD approach Niigata University Shigeyoshi Aoyama FB18, August 24 (2006) S. Aoyama,
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
DWIA calculation of 3 He (In-flight K -, n) reaction RIKEN, Advanced Meson Science Lab. Takahisa Koike KEK 研究会「現代の原子核物理-多様化し進化する原子核の描像」、 2006 年 8 月 3 日.
Presented by Building Nuclei from the Ground Up: Nuclear Coupled-cluster Theory David J. Dean Oak Ridge National Laboratory Nuclear Coupled-cluster Collaboration:
多体共鳴状態の境界条件によって解析した3α共鳴状態の構造
Two-body force in three-body system: a case of (d,p) reactions
Nuclear structure calculations with realistic nuclear forces
Resonance and continuum in atomic nuclei
Tensor optimized shell model and role of pion in finite nuclei
Open quantum systems.
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
軽い不安定核における 共鳴状態の構造 明 孝之 大阪工業大学 1 KEK 理論セミナー  
Impurity effects in p-sd shell and neutron-rich L hypernuclei
Nuclear excitations in relativistic nuclear models
Few-body approach for structure of light kaonic nuclei
Role of tensor force in light nuclei with tensor optimized shell model
Di-nucleon correlations and soft dipole excitations in exotic nuclei
直交条件模型を用いた16Oにおけるαクラスターガス状態の研究
Nicolas Michel (ESNT/SPhN/CEA) Kenichi Matsuyanagi (Kyoto University)
Osaka Institute of Technology
Probing correlations by use of two-nucleon removal
Presentation transcript:

Study of Weakly Bound Nuclei with an Extended Cluster-Orbital Shell Model Hiroshi MASUI Kitami Institute of Technology, Kitami, Japan K. Kato Hokkaido University, Sapporo, Japan K. Ikeda RIKEN, Wako, Japan 18 th International IUPAP Conference on Few-Body Problems in Physics “FB18” August 21-26, 2006, Santos, Sao-Paulo, BRAZIL

2. New aspects for the halo structure An extended Cluster-orbital shell model 1.A model to describe weakly bound, “many-nucleon” systems Introduction Gamow shell-model picture

A. Ozawa, from From experiments: Widening of R rms near the drip-lines

Abrupt changes happen near the neutron drip-line O-isotopes Separation Energy R rms

Difference from typical halo nuclei: 6 He, 11 Be, 11 Li Core + Multi-valence neutrons(?)Core+n (+2n) Large S n values of 23 O and 24 O ( 2.7MeV and 3.7MeV ) 6 He : 4 He+2n (S n : 0.98MeV) 11 Li : 9 Li+2n (S n : 0.33MeV) 11 Be: 10 Be+n (S n : 0.50MeV) 23 O : 22 O+n (S n : 2.7MeV) 24 O : 22 O+2n (S n : 3.7MeV) Weak-bound neutrons (Relatively) Strong-bound neutrons 16 O 22 O

From experiments: part 1 RIKEN (R. Kanungo et al., PLB512(2001) ) Reaction cross-section deduced by the Glauber model 22 O alone < 22 O in 23 O 22 O の R rms “Core” is soft enough 22 O is not appropriate to be considered as a Core

23 O ground state : 5/2 + (Lowest config. :1/2 + ) (0d 5/2 ) 6 is no good picture of 22 O = Not a “inert” core From experiments: part 2 RIKEN ( R. Kanungo et al., PRL88(2002) ) Momentum distribution fitted by the Glauber model Gives the best fit d 5/2 s 1/2 d 5/2 s 1/2 J  5/2 + J   1/2 +

From experiments: part 3 23 O-ground state is 1/2 + GSI (D. Cortina-Gil et al., PRL93(2004) ) Analysis using the Eikonal model Still this picture is true d 5/2 J   1/2 +

What we need is a model to describe weakly bound, “many-nucleon” systems An extended Cluster-Orbital Shell Model

Cluster-Orbital shell model (COSM) Y. Suzuki and K. Ikeda, PRC38(1998) Original: study of He-isotopes Shell-model Matrix elements (TBME) For many-particles COSM is suitable to describe systems: Weakly bound nucleons around a core Cluster-model Center of mass motion

− Neo Cluster-Orbital Shell-Model − We extend the model space 2. Dynamics of the total system Microscopic treatment of the core and valence nucleons Structure of the core Interaction between the core and a valence nucleon H.M, K. Kato and K. Ikeda, PRC73(2006), Description of weakly bound systems Gaussian basis function Stochastically chosened basis sets A sort of full-space calculation

Basis function for valence nucleons in COSM i-th basis function Gaussian Shell model: Single-particle states COSM: Non-orthogonal 1. Description of weakly bound systems

Anti-symmetrized wave function C.F.P.-like coefficients

“exact” method SVM-like approach V. I. Kukulin and V. M. Krasnopol’sky, J. Phys. G3 (1977) K. Varga and Y. Suzuki, Phys. Rev. C52(1995) H. Nemura, Y. Akaishi and Y. Suzuki, Phys. Rev. Lett. 89(2002) “Refinement” procedure 18 O ( 16 O+2n) : N=2000 Stochastic approach: N=138

2. Dynamics of the total system Size-parameter of the core: b 0p 3/2 0p 1/2 0s 1/2 h.o. config. We change core-size parameter b

16 O+XN systems

Microscopic Core-N interaction NN-int. : Volkov No.2 17 O (M k =0.58, H k =B k =0.07) directexchange Pauli (OCM)

16 O+XN systems Energies are almost reproduced

18 O 19 O 20 O Calculated levels of O-isotopes Order of levels: good GSM : N. Michel, et al., PRC67 (2003)

R rms radius

Dynamics of the core T. Ando, K. Ikeda, and A. Tohsaki-Suzuki, PTP64 (1980). Additional 3-body force Energy of 16 O-coreCore-N potential Described by the same core-size parameter b

Different minima of b b: 18 Ne case is larger O 18 Ne fixed-b changed 2.81 ± ±0.08 Exp. Energy of the total system corevalence

R rms are improved Inclusion of the dynamics of the core:

What is the difference? Change of Core - N interaction: Effect for the S-wave potential is different This could be a key to solve the structure of 23 O and 24 O If d5/2 is closed in 22 O, s-wave becomes dominant in 23 O Core+nCore+p 0d 5/2 1s 1/2

He-isotopes Core-N: KKNN potential ( H. Kanada et al., PTP61(1979) ) N-N: Minnesota (u=1.0) ( T.C. Tang et al. PR47(1978) ) An effective 3-body force ( T. Myo et al. PRC63(2001) ) calc. Ref.1 Ref.2 4 He He He [1] I. Tanihata et al., PRL55(1985) [2] G. D. Alkhazov et al. PRL78 (1997) R rmss Tail part of wave function

2. Comparison with GSM “Gamow Shell Model (GSM)” Single-particle states Bound states (h.o. base) Pole (bound and resonant ) + Continuum R. Id Betan, et al., PRC67(2003) N. Michel, et al., PRC67 (2003) G. Hagen, et al., PRC71 (2005) “Gamow” state

Progresses N. Michel, W. Nazarewicz, M. Ploszajczak, J. Okolowicz G. Hagen, M. Hjorth-Jensen, J. S. Vaagen R. Id Betan, R. J. Liotta, N. Sandulescu, T. Vertse He-, O-isotopes (Core+Xn), Li-isotopes (Core+Xn+p) Effective interaction, Lee-Suzuki transformation Many-body resonance, Virtual states

Preparation for a comparison 1. Completeness relation 2. Expansion of the wave function Solved by CSM Single-particleCOSM

18 O Even though the NN-int. and model space are different, pole and continuum contributions are the same [21] N. Michel et al., PRC67 (2003) [26] G. Hagen et al., PRC71 (2005) “SN” : N-particles in continuum

6 He “COSM” S. Aoyama et al. PTP93 (1995) V-base “ECM” T-base Correlation of n-n T-base is important

Poles and Continua of 6 He 0p 1/2 : 0p 3/2 : Almost the same Different [21] N. Michel et al., PRC67 (2003) [26] G. Hagen et al., PRC71 (2005) “SM” approaches:

Even though angular momenta In the basis set increase Contributions of the sum of p 3/2 and p 1/2 do not change

Details of poles and continua p 3/2 p 1/2 Almost the same Changes drastically!!

Summary 1. An extended COSM (Neo-COSM) Energies, R rms are reasonably reproduced Dynamics of the core is a key to study multi-valence nucleon sytems 2. Comparison to GSM Stable nuclei: Weakly bound nuclei: Same as GSM Different from GSM Correlations of poles and continua are included at a maximum Useful method to study stable and unstable nuclei within the same footing