Global plan Reinforcement learning I: –prediction –classical conditioning –dopamine Reinforcement learning II: –dynamic programming; action selection –Pavlovian.

Slides:



Advertisements
Similar presentations
Reinforcement Learning I: prediction and classical conditioning
Advertisements

Unconditioned stimulus (food) causes unconditioned response (saliva) Conditioned stimulus (bell) causes conditioned response (saliva)
Reinforcement learning
Wanting Things How Your Brain Works - Week 8 Dr. Jan Schnupp HowYourBrainWorks.net.
Conditioning Bear with me. Bare with me. Beer with me. Stay focused.
dopamine and prediction error
Neural Correlates of Variations in Event Processing during Learning in Basolateral Amygdala Matthew R. Roesch*, Donna J. Calu, Guillem R. Esber, and Geoffrey.
Computational Neuromodulation Peter Dayan Gatsby Computational Neuroscience Unit University College London Nathaniel Daw Sham Kakade Read Montague John.
Control of Attention and Gaze in the Natural World.
1 Decision making. 2 How does the brain learn the values?
Journal club Marian Tsanov Reinforcement Learning.
Dopamine, Uncertainty and TD Learning CNS 2004 Yael Niv Michael Duff Peter Dayan Gatsby Computational Neuroscience Unit, UCL.
Neurobiology of drug action and
Introduction: What does phasic Dopamine encode ? With asymmetric coding of errors, the mean TD error at the time of reward is proportional to p(1-p) ->
Dopamine, Uncertainty and TD Learning CoSyNe’04 Yael Niv Michael Duff Peter Dayan.
Is it an error to be ‘too different’!? Neurobiology of social conformity Ale Smidts a Co-authors: Vasily Klucharev ab Kaisa Hytönen ab, Mark Rijpkema b.
Reward processing (1) There exists plenty of evidence that midbrain dopamine systems encode errors in reward predictions (Schultz, Neuron, 2002) Changes.
FIGURE 4 Responses of dopamine neurons to unpredicted primary reward (top) and the transfer of this response to progressively earlier reward-predicting.
Neurobiology of drug action and addiction Richard Palmiter Dept Biochemistry.
Chapter 8 Instrumental Conditioning: Learning the Consequences of Behavior.
Theoretical Analysis of Classical Conditioning Thomas G. Bowers, Ph.D. Penn State Harrisburg.
CHAPTER 4 Pavlovian Conditioning: Causal Factors.
Reinforcement learning This is mostly taken from Dayan and Abbot ch. 9 Reinforcement learning is different than supervised learning in that there is no.
Prediction in Human Presented by: Rezvan Kianifar January 2009.
Reinforcement learning and human behavior Hanan Shteingart and Yonatan Loewenstein MTAT Seminar in Computational Neuroscience Zurab Bzhalava.
Michael S. Beauchamp, Ph.D. Assistant Professor Department of Neurobiology and Anatomy University of Texas Health Science Center at Houston Houston, TX.
Psychology of Learning EXP4404 Chapter 3: Pavlovian (Classical) Conditioning Dr. Steve.
Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder Jaeseung Jeong, Ph.D Department of Bio.
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 26- Reinforcement Learning for Robots; Brain Evidence.
Learning and Memory in the Auditory System The University of Iowa Department of Psychology Behavioral and Cognitive Neuroscience Amy Poremba, Ph.D. 1.
Current Theoretical Approaches and Issues in Classical Conditioning Psychology 3306.
Version 0.1 (c) CELEST Associative Learning.
Modelling Language Evolution Lecture 1: Introduction to Learning Simon Kirby University of Edinburgh Language Evolution & Computation Research Unit.
Basic Behavioral Neurobiology of Drug Addiction J. David Jentsch, Ph.D. Assistant Professor of Psychology (Behavioral Neuroscience)
Chapter 16. Basal Ganglia Models for Autonomous Behavior Learning in Creating Brain-Like Intelligence, Sendhoff et al. Course: Robots Learning from Humans.
FMRI studies of the human basal ganglia learning system Carol A. Seger Cognitive and Behavioral Neuroscience programs Department of Psychology Colorado.
The Role of the Basal Ganglia in Habit Formation Week 10 Group 1 Amanda Ayoub Kindra Akridge Barbara Kim Alyona Koneva.
The Role of the Basal Ganglia in Habit Formation By Henry H. Yin & Barbara J. Knowlton Group 3, Week 10 Alicia Iafonaro Kimberly Villalva Tawni Voyles.
Summary of part I: prediction and RL Prediction is important for action selection The problem: prediction of future reward The algorithm: temporal difference.
A View from the Bottom Peter Dayan Gatsby Computational Neuroscience Unit.
Summary of part I: prediction and RL Prediction is important for action selection The problem: prediction of future reward The algorithm: temporal difference.
Neural Reinforcement Learning Peter Dayan Gatsby Computational Neuroscience Unit thanks to Yael Niv for some slides.
Lectures 9&10: Pavlovian Conditioning (Major Theories)
Blocking The phenomenon of blocking tells us that what happens to one CS depends not only on its relationship to the US but also on the strength of other.
Current Theoretical Approaches and Issues in Classical Conditioning Psychology 3306.
Global plan Reinforcement learning I: –prediction –classical conditioning –dopamine Reinforcement learning II: –dynamic programming; action selection –Pavlovian.
What is meant by “top-down” and “bottom-up” processing? Give examples of both. Bottom up processes are evoked by the visual stimulus. Top down processes.
Learning & Memory JEOPARDY. The Field CC Basics Important Variables Theories Grab Bag $100 $200$200 $300 $500 $400 $300 $400 $300 $400 $500 $400.
Learning. What is Learning? Acquisition of new knowledge, behavior, skills, values, preferences or understanding.
Neural correlates of risk sensitivity An fMRI study of instrumental choice behavior Yael Niv, Jeffrey A. Edlund, Peter Dayan, and John O’Doherty Cohen.
Nucleus Accumbens An Introductory Guide.
Neurochemistry of executive functions
Does the brain compute confidence estimates about decisions?
18 Actions, Habits, and the Cortico-Striatal System.
Neural Coding of Basic Reward Terms of Animal Learning Theory, Game Theory, Microeconomics and Behavioral Ecology Wolfram Schultz Current Opinion in Neurobiology.
The Rescorla-Wagner Model
Dopamine system: neuroanatomy
Neuroimaging of associative learning
neuromodulators; midbrain; sub-cortical;
Classical Conditioning and prediction
Pavlovian Conditioning: Mechanisms and Theories
Neuroimaging of associative learning
Dopamine in Motivational Control: Rewarding, Aversive, and Alerting
PSY402 Theories of Learning
Ronald Keiflin, Patricia H. Janak  Neuron 
Neuroimaging of associative learning
Reward Mechanisms in Obesity: New Insights and Future Directions
Reward Mechanisms in Obesity: New Insights and Future Directions
Orbitofrontal Cortex as a Cognitive Map of Task Space
Presentation transcript:

Global plan Reinforcement learning I: –prediction –classical conditioning –dopamine Reinforcement learning II: –dynamic programming; action selection –Pavlovian misbehaviour –vigor Chapter 9 of Theoretical Neuroscience (thanks to Yael Niv)

2 Conditioning Ethology –optimality –appropriateness Psychology –classical/operant conditioning Computation –dynamic progr. –Kalman filtering Algorithm –TD/delta rules –simple weights Neurobiology neuromodulators; amygdala; OFC nucleus accumbens; dorsal striatum prediction: of important events control: in the light of those predictions

= Conditioned Stimulus = Unconditioned Stimulus = Unconditioned Response (reflex); Conditioned Response (reflex) Animals learn predictions Ivan Pavlov

Animals learn predictions Ivan Pavlov very general across species, stimuli, behaviors

But do they really? temporal contiguity is not enough - need contingency 1. Rescorla’s control P(food | light) > P(food | no light)

But do they really? contingency is not enough either… need surprise 2. Kamin’s blocking

But do they really? seems like stimuli compete for learning 3. Reynold’s overshadowing

Theories of prediction learning: Goals Explain how the CS acquires “value” When (under what conditions) does this happen? Basic phenomena: gradual learning and extinction curves More elaborate behavioral phenomena (Neural data) P.S. Why are we looking at old-fashioned Pavlovian conditioning?  it is the perfect uncontaminated test case for examining prediction learning on its own

error-driven learning: change in value is proportional to the difference between actual and predicted outcome Assumptions: 1.learning is driven by error (formalizes notion of surprise) 2.summations of predictors is linear A simple model - but very powerful! –explains: gradual acquisition & extinction, blocking, overshadowing, conditioned inhibition, and more.. –predicted overexpectation note: US as “special stimulus” Rescorla & Wagner (1972)

how does this explain acquisition and extinction? what would V look like with 50% reinforcement? eg –what would V be on average after learning? –what would the error term be on average after learning? Rescorla-Wagner learning

how is the prediction on trial (t) influenced by rewards at times (t-1), (t-2), …? Rescorla-Wagner learning recent rewards weigh more heavily why is this sensible? learning rate = forgetting rate! the R-W rule estimates expected reward using a weighted average of past rewards

Summary so far Predictions are useful for behavior Animals (and people) learn predictions (Pavlovian conditioning = prediction learning) Prediction learning can be explained by an error-correcting learning rule (Rescorla-Wagner): predictions are learned from experiencing the world and comparing predictions to reality Marr:

But: second order conditioning animals learn that a predictor of a predictor is also a predictor of reward!  not interested solely in predicting immediate reward animals learn that a predictor of a predictor is also a predictor of reward!  not interested solely in predicting immediate reward phase 1: phase 2: test: ? what do you think will happen? what would Rescorla-Wagner learning predict here?

lets start over: this time from the top Marr’s 3 levels: The problem: optimal prediction of future reward what’s the obvious prediction error? what’s the obvious problem with this? want to predict expected sum of future reward in a trial/episode (N.B. here t indexes time within a trial)

lets start over: this time from the top Marr’s 3 levels: The problem: optimal prediction of future reward want to predict expected sum of future reward in a trial/episode Bellman eqn for policy evaluation

lets start over: this time from the top Marr’s 3 levels: The problem: optimal prediction of future reward The algorithm: temporal difference learning temporal difference prediction error  t compare to:

17 prediction error no predictionprediction, rewardprediction, no reward TD error VtVt R RL

Summary so far Temporal difference learning versus Rescorla-Wagner derived from first principles about the future explains everything that R-W does, and more (eg. 2 nd order conditioning) a generalization of R-W to real time

Back to Marr’s 3 levels The problem: optimal prediction of future reward The algorithm: temporal difference learning Neural implementation: does the brain use TD learning?

Dopamine Dorsal Striatum (Caudate,Putamen) VentralTegmental Area SubstantiaNigra Amygdala NucleusAccumbens (Ventral Striatum) Prefrontal Cortex Dorsal Striatum (Caudate,Putamen) VentralTegmental Area SubstantiaNigra Amygdala NucleusAccumbens (Ventral Striatum) Prefrontal Cortex Dorsal Striatum (Caudate,Putamen) VentralTegmental Area SubstantiaNigra Amygdala NucleusAccumbens (Ventral Striatum) Prefrontal Cortex Dorsal Striatum (Caudate,Putamen) VentralTegmental Area SubstantiaNigra Amygdala NucleusAccumbens (Ventral Striatum) Prefrontal Cortex Parkinson’s Disease  Motor control + initiation? Intracranial self-stimulation; Drug addiction; Natural rewards  Reward pathway?  Learning? Also involved in: Working memory Novel situations ADHD Schizophrenia …

Role of dopamine: Many hypotheses Anhedonia hypothesis Prediction error (learning, action selection) Salience/attention Incentive salience Uncertainty Cost/benefit computation Energizing/motivating behavior

22 dopamine and prediction error no predictionprediction, rewardprediction, no reward TD error VtVt R RL

prediction error hypothesis of dopamine Tobler et al, 2005 Fiorillo et al, 2003 The idea: Dopamine encodes a reward prediction error

prediction error hypothesis of dopamine model prediction error measured firing rate Bayer & Glimcher (2005) at end of trial:  t = r t - V t (just like R-W)

what drives the dips? why an effect of reward at all? –Pavlovian influence Matsumoto & Hikosaka (2007)

what drives the dips? rHab -> rSTN RMTg (predicted R/S) Matsumoto & Hikosaka (2007) Jhou et al, 2009

Where does dopamine project to? Basal ganglia Several large subcortical nuclei (unfortunate anatomical names follow structure rather than function, eg caudate + putamen + nucleus accumbens are all relatively similar pieces of striatum; but globus pallidus & substantia nigra each comprise two different things)

Where does dopamine project to? Basal ganglia inputs to BG are from all over the cortex (and topographically mapped) Voorn et al, 2004

Corticostriatal synapses: 3 factor learning X1X1 X2X2 X3X3 XNXN V1V1 V2V2 V3V3 VNVN Cortex Stimulus Representation adjustable synapses PPTN, habenula etc Striatum learned values VTA, SNc Prediction Error (Dopamine)  R but also amygdala; orbitofrontal cortex;...

striatal complexities Cohen & Frank, 2009

Dopamine and plasticity Prediction errors are for learning… Cortico-striatal synapses show complex dopamine-dependent plasticity Wickens et al, 1996

Risk Experiment < 1 sec 0.5 sec You won 40 cents 5 sec ISI 19 subjects (dropped 3 non learners, N=16) 3T scanner, TR=2sec, interleaved 234 trials: 130 choice, 104 single stimulus randomly ordered and counterbalanced 2-5sec ITI 5 stimuli: 40¢ 20¢ 0 / 40¢ 0¢ 5 stimuli: 40¢ 20¢ 0 / 40¢ 0¢

Neural results: Prediction Errors what would a prediction error look like (in BOLD)?

Neural results: Prediction errors in NAC unbiased anatomical ROI in nucleus accumbens (marked per subject*) * thanks to Laura deSouza raw BOLD (avg over all subjects) can actually decide between different neuroeconomic models of risk

35 High Pain Low Pain Prediction error punishment prediction error Value TD error

36 TD model ? A – B – HIGH C – D – LOW C – B – HIGH A – B – HIGH A – D – LOW C – D – LOW A – B – HIGH A – B – HIGH C – D – LOW C – B – HIGH Brain responses Prediction error experimental sequence….. MR scanner Ben Seymour; John O’Doherty punishment prediction error

37 TD prediction error: ventral striatum Z=-4R punishment prediction error

38 right anterior insula dorsal raphe (5HT)? punishment prediction

punishment dips below baseline in dopamine –Frank: D2 receptors particularly sensitive –Bayer & Glimcher: length of pause related to size of negative prediction error but: –can’t afford to wait that long –negative signal for such an important event –opponency a more conventional solution: serotonin…

40 generalization

41 generalization

random-dot discrimination differential reward (0.16ml; 0.38ml) Sakagami (2010)

other paradigms inhibitory conditioning transreinforcer blocking motivational sensitivities backwards blocking –Kalman filtering downwards unblocking primacy as well as recency (highlighting) –assumed density filtering

Summary of this part: prediction and RL Prediction is important for action selection The problem: prediction of future reward The algorithm: temporal difference learning Neural implementation: dopamine dependent learning in BG  A precise computational model of learning allows one to look in the brain for “hidden variables” postulated by the model  Precise (normative!) theory for generation of dopamine firing patterns  Explains anticipatory dopaminergic responding, second order conditioning  Compelling account for the role of dopamine in classical conditioning: prediction error acts as signal driving learning in prediction areas

Striatum and learned values Striatal neurons show ramping activity that precedes a reward (and changes with learning!) (Schultz) startfood (Daw)

Phasic dopamine also responds to… Novel stimuli Especially salient (attention grabbing) stimuli Aversive stimuli (??) Reinforcers and appetitive stimuli induce approach behavior and learning, but also have attention functions (elicit orienting response) and disrupt ongoing behaviour. → Perhaps DA reports salience of stimuli (to attract attention; switching) and not a prediction error? (Horvitz, Redgrave)