Nucleic Acid Metabolism Robert F. Waters, PhD

Slides:



Advertisements
Similar presentations
Nucleotide Metabolism C483 Spring A ribose sugar is added to ________ rings after their synthesis and to ________ rings during their synthesis.
Advertisements

OBJECTIVES: 1.Nomenclature of nucleic acids: a. nucleosides* b. nucleotides 2.Structure and function of purines and pyrimidines. 3.Origin of atoms in.
Nucleotide Metabolism Student Edition 6/3/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall Web Site:
Dr. S.Chakravarty, MD. A 30 year old man comes with severe pain in great toe of right foot !!
Nucleic Acids Metabolism
Principles of Biochemistry
Metabolism of purines and pyrimidines - exercise - Vladimíra Kvasnicová.
Biosynthesis Also known as anabolism Construction of complex molecules from simple precursors Energy derived from catabolism used in biosynthesis.
BIOC Dr. Tischler Lecture 20 – February 10, 2006 METABOLISM: NUCLEOTIDE SYNTHESIS & DISORDERS.
1 Nucleotide Metabolism Nisa Rachmania Mubarik Major Microbiology Department of Biology, IPB 1212 Microbial Physiology (Nisa RM) ATP, are the sources of.
Dr. atef abdelmeguid Lecturer Faculty of Allied Medical Science Biochemistry Of Nucleic acids.
Chapter 26 Synthesis and Degradation of Nucleotides
Chapter 27 The Synthesis and Degradation of Nucleotides to accompany
Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 28-1The biosynthetic origins of purine ring atoms. Page 1069.
Nucleic acids metabolism
Final Exam Mon 8 am.
Copyright © 2007 by W. H. Freeman and Company Berg Tymoczko Stryer Biochemistry Sixth Edition Chapter 4: DNA, RNA, and the Flow of Genetic Information.
February 19 Chapter 27 Nucleic acid metabolism
Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution – Share Alike 3.0 License. Copyright 2007,
Chapter 26 The Synthesis and Degradation of Nucleotides Biochemistry
UNIT IV: Nitrogen Metabolism Nucleotide Metabolism Part 2.
Biosynthesis of nucleotides Natalia Tretyakova, Ph.D. Phar 6152 Spring 2004 Required reading: Stryer’s Biochemistry 5 th edition, p , (or.
Nitrogen Fixation Nitrogen fixation is the reduction of ____________:
Nucleotide Metabolism Lai-Chu Wu, D. Phil. Department of Molecular and Cellular Biochemistry 1 Dear LSI P1 Learners: This module is.
Lecture 30 Pyrimidine Metabolism/Disease Raymond B. Birge, PhD.
Nucleotide metabolism
Nucleic Acid metabolism. De Novo Synthesis of Purine Nucleotides We use for purine nucleotides the entire glycine molecule (atoms 4, 5,7), the amino nitrogen.
Metabolism of purine nucleotides A- De Novo synthesis: of AMP and GMP Sources of the atoms in purine ring: N1: derived from NH2 group of aspartate C2 and.
Nucleotide Metabolism
Nucleotide Metabolism -Biosynthesis-
Nucleotide Metabolism. Bases/Nucleosides/Nucleotides Base= Base Base + Sugar= Nucleoside Base + Sugar + Phosphate= Nucleotide AdenineDeoxyadenosine 5’-triphosphate.
BIOC/DENT/PHCY 230 LECTURE 6. Nucleotides o found in DNA and RNA o used for energy (ATP and GTP) o building blocks for coenzymes (NADH)
Nucleotide Metabolism -Biosynthesis- Dr. Sooad Al-Daihan 1.
Nucleotide metabolism Chapter 10. Function of neucleotides  Precursors for RNA and DNA synthesis  Energy substance in body (ATP)  Physiological Mediators.
The Practical Side of Nucleotide Metabolism November 29, 2001.
: Nitrogen metabolism Part B Nucleotide metabolism.
PURINE & PYRIMIDINE METABOLISM dr Agus Budiman. Nucleotide consists purine / pyrimidine base, ribose/deoxyribose and phosphates. Nucleotide consists purine.
NUCLEOTIDE METABOLISM SITI ANNISA DEVI TRUSDA. Nucleotides are essential for all cells DNA/RNA synthesis  protein synthesis  cells proliferate Carriers.
FCH 532 Lecture 28 Chapter 28: Nucleotide metabolism
Central Dogma of Biology. Nucleic Acids Are Essential For Information Transfer in Cells  Information encoded in a DNA molecule is transcribed via synthesis.
Metabolism of purines and pyrimidines Vladimíra Kvasnicová The figure was found at (Jan 2008)
Nucleotide metabolism
Nucleotide Metabolism
Chapter 8. Nucleotide Metabolism
Metabolism of purines and pyrimidines
Metabolism of purine nucleotides A- De Novo synthesis: of AMP and GMP Sources of the atoms in purine ring: N1: derived from NH2 group of aspartate C2 and.
Purine – Lecture. Nucleotides play key roles in many, many cellular processes 1. Activated precursors of RNA and DNA 2. Adenine nucleotides are components.
5’-IMP 5’-XMP 5’-GMP GDP GTP dGDP dGTP 5’-AMP ADP ATP dADP dATP.
Functions of Nucleotide: 1.Responsible for transmission of genetic informations 2. Act as energy currency 3.Carrier molecule for a broad spectrum of functional.
Metabolism of purine nucleotides A- De Novo synthesis: of AMP and GMP Sources of the atoms in purine ring: N1: derived from NH2 group of aspartate C2 and.
Nucleotide Metabolism
Synthesis of Pyrimidine Nucleotides
PURINE BIOSYNTHESIS.
Author(s): Dr. Robert Lyons, 2009
Introduction to Purine & Pyrimidine Nucleotides
Nucleotides, structure and function
Conversion of IMP to AMP
Nucleotide Metabolism
Synthesis of Purine Nucleotides
Pyrimidine metabolism
Pyrimidine Synthesis and Degradation
NUCLEIC ACID METABOLISM A. A. OSUNTOKI, Ph.D.. NUCLEIC ACIDS Polynucleotides i.e. polymers of nucleotides Two types Deoxyribonucleic acid (DNA) and Ribonucleic.
De Nova synthesis of Purine Nucleotides
Synthesis Of Pyrimidine Nucleotides By Salvage Pathway
Synthesis of Pyrimidine Nucleotides
Nucleotide Metabolism. Nucleotides Nucleotides are made from a nucleoside and phosphate Nucleosides from nitrogenous base and sugar molecule – The nitrogenous.
PYRIMIDINE BIOSYNTHESIS
Figure 20.1 Synthesis of PRPP.
ATP? Depends on the system…..
Chapter 8. Nucleotide Metabolism
Presentation transcript:

Nucleic Acid Metabolism Robert F. Waters, PhD Nucleotides Essential for all cells Carriers of activated intermediates in carbohydrate, lipids and proteins CoA FAD NAD NADP Energy Carriers ATP Inhibiting or activating enzymes DNA RNA

Nucleotide Structure Ribose Sugar Base Nucleoside Nucleotide Ribose Deoxyribose Base Purines Pyrimidines Nucleoside Base plus sugar Nucleotide E.g., AMP, ADP, ATP

Nomenclature DNA Purine Bases Purine Nucleosides Adenine Guanine Purine Nucleosides Adenosine Guanosine DNA Nucleotides (Purine) dAMP (deoxyadenylate) dGMP (deoxyguanylate) RNA Nucleotides (Purine) Adenylate (AMP) Guanylate (GMP)

Nomenclature Continued DNA Pyrimidine Bases Thymine Cytosine (Also RNA) DNA Pyrimidine Nucelosides Thymidine Cytidine DNA Pyrimidine Nucleotides (dTMP) deoxythymidylate (dCMP) deoxycytidylate RNA Pyrimidine Nucleotides (CMP) cytidylate (UMP) uridylate

PRPP 5-Phosphoribosyl 1-Pyrophosphate Addition of the ribose sugar component HMP ATP Required Mg++ Pi activates and nucleosides inhibit

Pyrimidine Synthesis UMP (Uridine 5-monophosphate) to UTP Precursor to CTP Occurs on mitochondria inner membrane Carbamoyl phosphate synthetase II Different from CPS I CPS I uses free ammonia CPS II uses glutamine for amino source

Carbamoyl Phosphate Synthetase II

Formation of Uridine 5’-phosphate

Enzymes of Pyrimidine Biosynthesis

UTP to CTP Conversion CTP Synthetase Reaction

Conversion of Ribonucleotides to Deoxyribonucleotides Ribonucleotide reductase NADP Thioredoxin reductase Example is production of dCDP

Allosteric Inhibition of Ribonucleotide Reductase ATP activates dATP inhibits

Thymidylate Biosynthesis Substrates and Vitamins dUMP Folate (N5, N10,-Methylene-THF) Glycine/Serine NADP

Conversion of dUMP to dTMP:Overall 5-fluorouracil Methotrexate

Thymidylate Pathway:Specific

Thymidylate Synthesis and Cancer Chemotherapy Thymidylate synthase is target for fluorouracil Action is 5-fluorouracil (5-FU)is converted to 5-fluoro-2’-deoxyuridylate (dUMP structural analog) Then 5-fluoro-2’-deoxyuridylate binds to the enzyme Thymidylate Synthase and undergoes a partial reaction where part of the way through 5-fluoro-2’-deoxyuridylate forms a covalent bridge between Thymidylate Synthase and N5, N10-Methylene THF and is an irreversible inhibition. Normally, the enzyme, Thymidylate Synthase and the vitamin would NOT be linked together permanently This type of inhibition is called “suicide-based enzyme inhibition” because the inhibitor participates in the reaction causing the enzyme to react with the compound producing a compound that inactivates the enzyme itself.

Fluorouracil Pathway Suicide inhibition because Flurouracil does not directly inhibit enzyme.

Methotrexate Competitive inhibitor of Dihydrofolate Reductase Used in, Acute lymphoblastic leukemia Osteosarcoma in children Solid tumor treatment Breast, head, neck, ovary, and bladder Prevents regeneration of tetrahydrofolate and removes activity of the active forms of folate

Leucovorin Rescue Strategy in Methotrexate Chemotherapy Patients given sufficient methotrexate that if were not followed by Leucovorin (N5-methenyl-THF) would be fatal. All neoplastic cells are killed Patients are “rescued” (6-36 hours) by the Leucovorin (Folate) otherwise would die due to permanent tetrahydrofolate shutdown. Tumor resistance to methotrexate can occur in patients who have “gene amplification” of dihydrofolate reductase (in tumor cells) More dihydrofolate reductase is produced by more than the normal active genes usually present in normal cells.

Purine Biosynthesis IMP (Inosine Monophosphate) Utilizes (Substrates) Precursor to GMP and AMP Utilizes (Substrates) Glycine Glutamine ATP Folate (N10-formyl-THF) Aspartate CO2 PRPP amidotransferase is rate limiting Inhibited by AMP and GMP

IMP Pathway

IMP to AMP and GMP Glutamine, NAD, ATP used in GMP production Aspartate, GTP used AMP production

AMP and GMP Pathway

Nucleotide Pyrimidine Catabolism Degradation of pyrimidine metabolites UMP, CMP, TMP End products are acetyl-CoA and Propionyl-CoA Ribose sugar component may be converted to ribose-5-phosphate which is a substrate for PRPP Synthetase Ribose sugar component may be further catabolized in HMP pathway

Pyrimidine Catabolic Pathway

Purine Catabolism

Regulation of Nucleotide Metabolism Pyrimidine Regulation Primary regulatory step is Carbamoyl Phosphate via Carbamoyl Phosphate Synthetase II Purine Regulation

Action of Allopurinol Allopurinol is purine base analog Three mechanisms Allopurinol is oxidized to alloxanthine by xanthine dehydrogenase Then Allopurinol and alloxanthine are inhibitors of xanthine dehydrogenase This inhibition decreases urate formation Then concentrations of Allopurinol and alloxanthine increase but do not precipitate as urate does. Allopurinol and alloxanthine are excreted into the urine

Action of Allopurinol:Pathway

Biosythesis of Nucleotide Coenzymes CoA OTC is pantothenate Uses ATP, CTP, Cysteine

Coenzyme A Pathway

FMN and FAD OTC is riboflavin Consumes ATP