Techniques of Molecular Biology
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments Hybridization techniques Genomics Sequencing genomes Analyzing genome sequences Proteomics Separating proteins Analyzing proteins
Basic molecular biology techniques Isolating nucleic acids
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments
DNA can be reproducibly split into fragments by restriction endonucleases
DNA fragments can be separated by size in agarose or polyacrylamide gels Because of the phosphates in the sugar phosphate backbone, nucleic acids are negatively charged. In an electric field nucleic acids will move towards the positive pole. Smaller fragments move faster than larger fragments through the pores of a gel.
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments DNA can be amplified by Cloning PCR
DNA cloning and construction of DNA libraries Cloning in a plasmid vectorGenomic librarycDNA library
Vectors for DNA cloning
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments DNA can be amplified by Cloning PCR
The polymerase chain reaction (PCR)
DNA polymerases dATP dTTP dGTP dCTP
DNA polymerases
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments Hybridization techniques
Single-stranded nucleic acids can bind to each other by base pairing if they contain complementary sequences Using a single-stranded labeled probe complementary base pairing is able to detect specific nucleic acids among many different nucleic acids. If the probe is used to detect DNA, the analysis is called DNA blot (Southern) analysis. If an RNA fragment is detected, the analysis is called RNA blot (northern) analysis.
Transcriptome analysis using microarrays
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments Hybridization techniques Genomics Sequencing genomes
Sequencing techniques dideoxysequencing pyrosequencing dATP dTTP dGTP dCTP Genomic library denature (make single-stranded) anneal primer extend primer to copy one of the strands
Sequencing techniques dideoxysequencing pyrosequencing
Sequencing techniques dideoxysequencing
Sequencing techniques dideoxysequencing ≈ 800 nucleotides can be sequenced in one run polyacrylamide gel electrophoresis
Sequencing techniques dideoxysequencing pyrosequencing ≈ 200 nucleotides can be sequenced in one run
Next generation sequencing methods
Genomics Sequencing genomes (assembling the sequence)
Genomics Sequencing genomes (assembling the sequence)
Genomics Sequencing genomes (assembling the sequence)
Genomics Sequencing genomes Analyzing genome sequences
Genomics Sequencing of genomes Split genome into pieces and sequence all pieces. Assembling the sequence (computer). Sequence analysis (annotation 1) Identify genes and other elements in sequence. Functional analysis (annotation 2) Determine function of identified elements.
How to find genes in a genome sequence Protein-coding genes Find open reading frames (protein-coding sequences) Find sequence with a codon bias Find upstream regulatory sequences (e.g. CpG islands) Find exon-intron boundaries Genes coding for functional RNAs Find consensus sequences for tRNAs and ribosomal RNAs Find specific RNA secondary structures (e.g. stem loops) Find upstream regulatory sequences
Genomic sequence
Finding open reading frames
gagtccagttgaaaagcaactggaatccccttatagataaattaatatctattttaaaattgaatagtttttattctagtttcgttttaagattaataaaattatgtctaaccaagtattta ctactttacgcgcagcaacattagctgttattttaggtatggctggtggcttagcagtaagtccagctcaagcttaccctgtatttgcacaacaaaactacgctaacccacgtga ggctaatggtcgtattgtatgtgcaaactgtcacttagcgcaaaaagcagttgaaatcgaagtaccacaagctgttttacctgatactgtttttgaagctgttattgaacttccata cgataaacaagttaaacaagttttagctaatggtaaaaaaggtgacttaaacgttggtatggttttaattttaccagaaggttttgaattagcaccaccagatcgcgttccggca gaaattaaagaaaaagttggtaacctttactaccaaccatacagtccagaacaaaaaaatattttagttgttggtccagttccaggtaaaaaatacagtgaaatggtagtacc tattttatctccagatcctgctaaaaataaaaacgtttcttacttaaaatatcctatttattttggtggtaatcgtggtcgtggtcaagtatatccagatggtaaaaaatcaaacaaca ctatttacaacgcatcagcagctggtaaaattgtagcaatcacagctctttctgagaaaaaaggtggttttgaagtttcaattgaaaaagcaaacggtgaagttgttgtagaca aaatcccagcaggtcctgatttaattgttaaagaaggtcaaactgtacaagcagatcaaccattaacaaacaaccctaacgttggtggtttcggtcaggctgaaactgaaatt gtattacaaaaccctgctcgtattcaaggtttattagtattcttcagttttgttttacttactcaagttttattagttcttaagaaaaaacaattcgaaaaagttcaattagcagaaatga acttctaatatttaattttttgtagggctgctgtgcagctcctacaaattttagtatgttatttttaaagtttgatatactgaaaacaaagttctacttgaacgatatttagcttttaatgcTA TAATATagcggactaagccgttggcaatttagctgccaattaattttattcgaaggatgtaaacctgctaacgatatttatatataagcattttaatactccgagggaggcctct aacctttagcaagtaagtaaacttccccttcggggcagcaaggcagcagatttaaattctccaaaggaggcagttgatatcagtaaaccccttcgatgactctggcattgatg caaagcatggggaaactaaagttcctccactgcctccttccccttccctttcgggacgtccccttccccttacgggcaagtaaacttagggattttaatgcaataaataaatttgt ccccttacgggacgtcagtggcagttgcgaagtattaatattgtatataaatatagaatgtttacatactccgaaggaggacgtcagtggcagtggtaccgccactgctatttta atactccgaaggagcagtggtggtcccactgccactaaaatttatttgcccgaagacgtcctgccaactgccgaggcaaatgaattttagtggacgtcccttacgggacgtc agtggcagttgcctgccaactgcctccttccccttcgggcaagtaaacttgggagtattaacataggcagtggcggtaccacaataaattaatttgtcctccttccccttcgggc aagtaaacttaggagtatgtaaacattctatatttatatactcccatgctttgccccttaagggacaataaataaatttgtccccttcgggcaaataaatcttagtggcagttgcaa aatattaatatcgtatataaatttggagtatataaataaatttggagtatataaatataggatgttaatactgcggagcagcagtggtggtaccactgccactaaaatttatttgcc cgaaggggacgtcctgccaactgccgatatttatatattccctaagtttacttgccccatatttatatattcctaagtttacttgccccatatttatattaggacgtccccttcgggt Expasy server Finding open reading frames
Sequence from the E. coli genome
The E. coli genome
5’ UTR3’ UTR coding region = open reading frames Translation start Translation stop 5’ -- 3’ protein-coding gene = DNA transcribed into mRNA Protein-coding genes Genes = all DNA sequences that are transcribed into RNA UTR = untranslated region
Figure 5.4 Genomes 3 (© Garland Science 2007) Exons and introns in eukaryotic genes 5’ UTR3’ UTR
How to find genes in a genome sequence Protein-coding genes Find open reading frames (protein-coding sequences) Find sequence with a codon bias Find upstream regulatory sequences (e.g. CpG islands) Find exon-intron boundaries Genes coding for functional RNAs Find consensus sequences for tRNAs and ribosomal RNAs Find specific RNA secondary structures (e.g. stem loops) Find upstream regulatory sequences
Figure 5.6b Genomes 3 (© Garland Science 2007)
Figure 5.10 Genomes 3 (© Garland Science 2007) A typical sequence annotation result
Verifying the identity of a gene Homology search Experimental techniques Northern hybridization Zoo-blotting
Verifying the identity of a gene Homology search MSNQVFTTLR AATLAVILGM AGGLAVSPAQ AYPVFAQQNY ANPREANGRI VCANCHLAQK AVEIEVPQAV LPDTVFEAVI ELPYDKQVKQ VLANGKKGDL NVGMVLILPE GFELAPPDRV PAEIKEKVGN LYYQPYSPEQ KNILVVGPVP GKKYSEMVVP ILSPDPAKNK NVSYLKYPIY FGGNRGRGQV YPDGKKSNNT IYNASAAGKI VAITALSEKK GGFEVSIEKA NGEVVVDKIP AGPDLIVKEG QTVQADQPLT NNPNVGGFGQ AETEIVLQNP ARIQGLLVFF SFVLLTQVLL VLKKKQFEKV QLAEMNF BLAST BLAST = Basic Local Alignment Search Tool
Figure 5.28 Genomes 3 (© Garland Science 2007) 6274 ORFsCase study, yeast genome
Finding the function of a gene (product) Computer based analysis Homology search Experimental analysis Gene inactivation Overexpression
Whole genome studies Tiling assays
Working with proteins Separating proteins Analyzing proteins and their interactions
Separating proteins on polyacrylamide gels
Immunoblot (Western blot)
Proteins can be sequenced
Complex mixtures of proteins can be analyzed by mass spectrometry
Liquid chromatography is used to separate peptides before mass spectrometry
Mass spectrum
Mass spectra are compared to theoretical values
Figure 6.11 Genomes 3 (© Garland Science 2007) Mouse liver proteins
Figure 6.20a Genomes 3 (© Garland Science 2007) Protein interaction map of yeast
Nucleic acid protein interactions Electrophoretic mobility shift assay (EMSA)
Nuclease protection footprinting
In vitro selection assay
Chromatin immuno- precipitation (ChIP)
Chromosome conformation capture (3C assay)