Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.

Slides:



Advertisements
Similar presentations
Equations in Quadratic Form
Advertisements

Parallel and Perpendicular Lines
< < < > > >         . There are two kinds of notation for graphs of inequalities: open circle or filled in circle notation and interval notation.
Operations on Functions
Solving Quadratic Equations.
Parallel and Perpendicular Lines
LINES. gradient The gradient or gradient of a line is a number that tells us how “steep” the line is and which direction it goes. If you move along the.
If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola.
PAR TIAL FRAC TION + DECOMPOSITION. Let’s add the two fractions below. We need a common denominator: In this section we are going to learn how to take.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
REAL NUMBERS. {1, 2, 3, 4,... } If you were asked to count, the numbers you’d say are called counting numbers. These numbers can be expressed using set.
A n g l e s a n d T h e i r M e a s u r e. An angle is formed by joining the endpoints of two half-lines called rays. The side you measure from is called.
SETS A = {1, 3, 2, 5} n(A) = | A | = 4 Sets use “curly” brackets The number of elements in Set A is 4 Sets are denoted by Capital letters 3 is an element.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SPECIAL USING TRIANGLES Computing the Values of Trig Functions of Acute Angles.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
TRIGONOMETRIC IDENTITIES
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
INVERSE FUNCTIONS.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
exponential functions
GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
ARITHMETIC SEQUENCES These are sequences where the difference between successive terms of a sequence is always the same number. This number is called the.
When trying to figure out the graphs of polar equations we can convert them to rectangular equations particularly if we recognize the graph in rectangular.
LINEAR Linear programming techniques are used to solve a wide variety of problems, such as optimising airline scheduling and establishing telephone lines.
Properties of Logarithms
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
VECTORS.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.
11.3 Powers of Complex Numbers, DeMoivre's Theorem Objective To use De Moivre’s theorem to find powers of complex numbers.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
Warm Up! Complete the square Quadratic Functions and Models.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
INTRODUCING PROBABILITY. This is denoted with an S and is a set whose elements are all the possibilities that can occur A probability model has two components:
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
Solving Trigonometric Equations Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 x y π π 6 -7 π 6 π 6.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
PARAMETRIC Q U A T I 0 N S. The variable t (the parameter) often represents time. We can picture this like a particle moving along and we know its x position.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
10-7 (r, ).
SIMPLE AND COMPOUND INTEREST
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
THE DOT PRODUCT.
(r, ).
Absolute Value.
Graphing Techniques: Transformations Transformations Transformations
INVERSE FUNCTIONS.
SIMPLE AND COMPOUND INTEREST
INVERSE FUNCTIONS Chapter 1.5 page 120.
INVERSE FUNCTIONS.
Graphing Techniques: Transformations Transformations: Review
Symmetric about the y axis
exponential functions
Symmetric about the y axis
Graphing Techniques: Transformations Transformations: Review
Presentation transcript:

Parallel and Perpendicular Lines

Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use this form when you know a point on the line and the gradient Also can use this version if you have two points on the line because you can first find the gradient using the gradient formula and then use one of the points and the gradient in this equation. General Form Commonly used to write linear equation problems or express answers

The gradient is a number that tells "how steep" the line is and in which direction. So as you can see, parallel lines have the same gradients so if you need the gradient of a line parallel to a given line, simply find the gradient of the given line and the gradient you want for a parallel line will be the same. Perpendicular lines have negative reciprocal gradients so if you need the gradient of a line perpendicular to a given line, simply find the gradient of the given line, take its reciprocal (flip it over) and make it negative.

Let's look at a line and a point not on the line (2, 4) Let's find the equation of a line parallel to y = - x that passes through the point (2, 4) y = - x What is the gradient of the first line, y = - x ? This is in gradient intercept form so y = mx + b which means the gradient is – Distribute and then solve for y to leave in gradient-intercept form. 2 So we know the gradient is –1 and it passes through (2, 4). Having the point and the gradient, we can use the point-gradient formula to find the equation of the line

What if we wanted perpendicular instead of parallel? (2, 4) Let's find the equation of a line perpendicular to y = - x that passes through the point (2, 4) y = - x The gradient of the first line is still – Distribute and then solve for y to leave in gradient-intercept form. The gradient of a line perpendicular is the negative reciprocal so take –1 and "flip" it over and make it negative. So the gradient of a perpendicular line is 1 and it passes through (2, 4).

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. Shawna has kindly given permission for this resource to be downloaded from and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar