Gauss’ Law Gaussian Surface Flux Gauss’ Law Charged Isolated Conductor Applying Gauss’ Law Cylindrical Symmetry Planar Symmetry Spherical Symmetry pps.

Slides:



Advertisements
Similar presentations
Conductors in Electrostatic Equilibrium
Advertisements

Gauss’s Law Electric Flux
Gauss’ Law AP Physics C.
Lecture Set 3 Gauss’s Law
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
The electric flux may not be uniform throughout a particular region of space. We can determine the total electric flux by examining a portion of the electric.
Study Guide Chapter 19 Sections 9 & 10
Electric Potential AP Physics Montwood High School R. Casao.
Continuous Charge Distributions
Charge distribution given Electric field Electric field givenCharge distribution Gauss rocks Carl Friedrich Gauss (1777–1855) We conclude.
Week #3 Gauss’ Law September 7, What’s up Doc?? At this moment I do not have quiz grades unless I get them at the last minute. There was a short.
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
Physics 2102 Lecture 4 Gauss’ Law II Physics 2102 Jonathan Dowling Carl Friedrich Gauss Version: 1/23/07 Flux Capacitor (Operational)
Charge and Electric Flux. Electric Flux A closed surface around an enclosed charge has an electric flux that is outward on inward through the surface.
Phy 213: General Physics III Chapter 23: Gauss’ Law Lecture Notes.
Chapter 24 Gauss’s Law.
Chapter 23 Gauss’ Law.
Chapter 24 Gauss’s Law.
1/18/07184 Lecture 71 PHY 184 Spring 2007 Lecture 7 Title: Using Gauss’ law.
Chapter 22 Gauss’s Law Electric charge and flux (sec & .3)
Chapter 24 Gauss’s Law.
Physics 121: Electricity & Magnetism – Lecture 3 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Chapter 23 Gauss’s Law.
Steps to Applying Gauss’ Law
Gauss’s Law.
From Chapter 23 – Coulomb’s Law
Gauss’ Law. Class Objectives Introduce the idea of the Gauss’ law as another method to calculate the electric field. Understand that the previous method.
a b c Gauss’ Law … made easy To solve the above equation for E, you have to be able to CHOOSE A CLOSED SURFACE such that the integral is TRIVIAL. (1)
Summer July Lecture 3 Gauss’s Law Chp. 24 Cartoon - Electric field is analogous to gravitational field Opening Demo - Warm-up problem Physlet /webphysics.davidson.edu/physletprob/webphysics.davidson.edu/physletprob.
A b c Gauss' Law.
Chapter 24 Gauss’s Law.
Chapter 23 Gauss’ Law Key contents Electric flux Gauss’ law and Coulomb’s law Applications of Gauss’ law.
Gauss’s law : introduction
III.A 3, Gauss’ Law.
Gauss’s Law The electric flux through a closed surface is proportional to the charge enclosed The electric flux through a closed surface is proportional.
Definitions Flux—The rate of flow through an area or volume. It can also be viewed as the product of an area and the vector field across the area Electric.
Electric Charge and Electric Field
Chapter 21 Gauss’s Law. Electric Field Lines Electric field lines (convenient for visualizing electric field patterns) – lines pointing in the direction.
Electricity and Magnetism Review 1: Units 1-6
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Chapter 22 Gauss’ Law.
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
1 CHAPTER-23 Gauss’ Law. 2 CHAPTER-23 Gauss’ Law Topics to be covered  The flux (symbol Φ ) of the electric field  Gauss’ law  Application of Gauss’
Copyright © 2009 Pearson Education, Inc. Chapter 22 Gauss’s Law.
ELECTRICITY PHY1013S GAUSS’S LAW Gregor Leigh
Lecture Set 3 Gauss’s Law Spring Calendar for the Week Today (Wednesday) –One or two problems on E –Introduction to the concept of FLUX Friday –7:30.
Introduction: what do we want to get out of chapter 24?
Gauss’ Law Chapter 23 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
د/ بديع عبدالحليم د/ بديع عبدالحليم
A b c. Choose either or And E constant over surface is just the area of the Gaussian surface over which we are integrating. Gauss’ Law This equation can.
Physics 2102 Gauss’ law Physics 2102 Gabriela González Carl Friedrich Gauss
Physics 2113 Lecture: 09 MON 14 SEP
Physics 212 Lecture 4, Slide 1 Physics 212 Lecture 4 Today's Concepts: Conductors + Using Gauss’ Law Applied to Determine E field in cases of high symmetry.
University Physics: Waves and Electricity Ch23. Finding the Electric Field – II Lecture 8 Dr.-Ing. Erwin Sitompul
Gauss’ Law Chapter 23. Electric field vectors and field lines pierce an imaginary, spherical Gaussian surface that encloses a particle with charge +Q.
Charles Allison © 2000 Chapter 22 Gauss’s Law.. Charles Allison © 2000 Problem 57.
Electric Fields… …and Gauss’ Law Chapter 18 The Concept of a Field A field is defined as a property of space in which a material object experiences a.
Flux and Gauss’s Law Spring Last Time: Definition – Sort of – Electric Field Lines DIPOLE FIELD LINK CHARGE.
Gauss’s Law Electric Flux
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Flux and Gauss’s Law Spring 2009.
Gauss’ Law AP Physics C.
Gauss’s Law Electric Flux
Chapter 23 Gauss’s Law.
Gauss’ Law AP Physics C.
Chapter 23 Gauss’ Law Key contents Electric flux
CHAPTER-23 Gauss’ Law.
Chapter 23 Gauss’s Law.
Gauss’ Law AP Physics C.
Chapter 23 Gauss’s Law.
Presentation transcript:

Gauss’ Law Gaussian Surface Flux Gauss’ Law Charged Isolated Conductor Applying Gauss’ Law Cylindrical Symmetry Planar Symmetry Spherical Symmetry pps by C Gliniewicz

Symmetry is an important concept in physics. It allows some seemingly difficult problems to be solved with ease. Carl Friedrich Gauss imagined a hypothetical closed surface enclosing a charge distribution. This Gaussian surface can have any shape, but the shape that minimizes calculation of the electric field is one that mimics the symmetry of the charge distribution. A spherical group of charges would use a spherical surface. Gauss’ Law relates the electric field at points on the Gaussian surface to the net charge enclosed inside the surface. One can visualize the electric field as a distribution of arrow denoting the field. A Gaussian surface enclosing the charges will have these arrows piercing the surface. Some may be entering the surface. Others may be leaving the surface. As an analogy, one can visualize a screen in a river. Water passes through the screen in the same way. One can determine how much water goes through the screen by multiplying the speed of the water by the area of the screen. One then has the volume of water passing through the screen each second. This flow is called the flux from the latin word “to flow.” We always consider the flow perpendicular to the screen. The symbol used for flux is Φ. pps by C Gliniewicz

The flux of an electric field is just the electric field, perpendicular to a surface multiplied by the area of that surface. Note that area is a vector. The area is positive if it points out of the surface and is negative if it points into the surface. Since the flux has the sum of the electric field, it can be rewritten as an integral. The circle through the integral sign means that the calculation is done over a closed surface. When one thinks of the electric field as arrows, one can say that the flux is proportional to the number of lines passing through the Gaussian surface. To make calculation easier, try to pick a Gaussian surface which keeps the electric field lines perpendicular to the surface. For instance, for a point charge, a sphere with the point at the center would work nicely. A homogeneous field pointing in one direction might require a box- like surface with sides parallel to and perpendicular to the field or perhaps a cylindrical surface with the field perpendicular to the ends and parallel to the sides. pps by C Gliniewicz

Gauss’ Law, as mentioned earlier, relates the flux to the net charge enclosed inside the surface. If the enclosed charge is positive, the net flux will be positive, and if the enclosed charge is negative, the net flux will be negative. The electric field for a point charge is If one imagines a spherical surface around the charge at its center, all the radii are perpendicular to the surface which has a area, Substituting these quantities into Gauss’ Law gives It is obvious that the charged enclosed is equal to q, the charge causing the electric field. pps by C Gliniewicz

If an excess of charge is placed on an isolated conductor, that charge will move to the surface of the conductor and none of the charge will be found inside the conductor. The electric field inside the conductor must be zero since the presence of an electric field would create a force on any charge causing a flow of the free electrons in the conductor. An electric field would exist while the conductor is being charged, but would disappear once the charging halts. If a cavity were formed inside the conductor, there would no charge on the inner surface and no electric field. The electric field on the surface of a charged conductor depends on the charge per unit area. If a line of charge exists, one can create a Gaussian surface around the wire in the shape of a cylinder with the wire along its axis. pps by C Gliniewicz

If two charged plates lie parallel to one another with equal and opposite charges on the surfaces. The charges on each conducting plate will migrate to the facing sides because of attraction between the charges. The electric field between the two plates is constant and equal to If a charge is placed on a non-conducting sheet, the electric field is A shell of uniform charge attracts or repels a charged particle that is outside the shell as if all the shell’s charge were concentrated at the center of the shell. If the charged particle were inside the shell, no electric force would be experienced. If a non-conducting sphere has a charge distributed uniformly throughout the sphere and one desired to know the electric field at any point inside the sphere, one had to realize that any charge farther from the center of the sphere than the point of interest creates no electric field. Only the charge closer to the center create the electric field. Using r as the distance from the center and R as the radius of the sphere, and r≤R, one finds pps by C Gliniewicz