Lecture 10. AFM.

Slides:



Advertisements
Similar presentations
AFM Basics Xinyong Chen.
Advertisements

Atomic Force Microscope (AFM)
Scanning Probe Microscopy
Scanning Probe Microscopy ( STM / AFM )
Scanned-proximity Probe Microscopy (SPM) Background Emphasis on Atomic Force Microscopy (AFM) Reading SPM Features AFM Specifics AFM Operation (Conceptual)
The Principle of Microscopy : SEM, TEM, AFM
SCANNING PROBE MICROSCOPY By AJHARANI HANSDAH SR NO
Nanomechanical Detection of Living Cell Surface April 10, 2006 Joseph Abel USU Dept of Physics Living SH-SY5Y Neuroblastoma Cell
Imaging of flexural and torsional resonance modes of atomic force microscopy cantilevers using optical interferometry Michael Reinstaedtler, Ute Rabe,
REU Wednesdays at One: Scanning Probe Microscopy June 30 th, 2010 Susan Enders Department of Engineering Mechanics.
Sample laser cantilever quadrant photodetector tip AFM measures x, y, and z dimensions. The AFM works by scanning a silicon or silicon nitride tip, with.
Atomic Force Microscopy: characterization of surface topography Andrius Martinavičius.
Atomic force microscopy Jiří Boldyš. Outline Motivation Minisurvey of scanning probe microscopies Imaging principles Ideas about application of moment.
UNIT IV LECTURE 61 LECTURE 6 Scanning Probe Microscopy (AFM)
Atomic Force Microscopy
Atomic Force Microscopy
Get to the point!. AFM - atomic force microscopy A 'new' view of structure (1986) AlGaN/GaN quantum well waveguide CD stamper polymer growth surface atoms.
Atomic Force Microscop (AFM) 3 History and Definitions in Scanning Probe Microscopy (SPM) History Scanning Tunneling Microscope (STM) Developed.
Made By: 1.ABHIST KUMAR 2.SHUBHAM DIXIT 3.NEHA SRIVASTAVA 4.PALLAVINI PANDEY 5.TANVI SINGH.
Atomic Force Microscopy
Atomic Force Microscopy
Scanning Probe Microscopy (SPM) Real-Space Surface Microscopic Methods.
Scanning Tunneling Microscope (STM) x feedback regulator high voltage amplifier z y I Negative feedback keeps the current constant (pA-nA) by moving the.
آشنایی با میکروسکوپ نیروی اتمی Dr. Janelle Gunther March 10, 1998 ACS Group and MENs, Beckman Institute adapted from the world wide web page at
Nano-technology and Nano-electronics
Scanning Tunneling Microscopy and Atomic Force Microscopy
Methods and Tehniques in Surface Science
ATOMIC FORCE MICROSCOPE Presented By Er. RANJAN CHAKRABORTY, B.Tech; A Student in M.Tech (VLSI & MICROELECTRONICS) 1 st Year, 2 nd Semester.
TAPPINGMODE™ IMAGING APPLICATIONS AND TECHNOLOGY
UIC Atomic Force Microscopy (AFM) Stephen Fahey Ph.D. Advisor: Professor Sivananthan October 16, 2009.
Tuning Fork Scanning Probe Microscopy Mesoscopic Group Meeting November 29, 2007.
Cover of Scientific American, October Source: Actuator driven by thermal expansion of water and air.
Creative Research Initiatives Seoul National University Center for Near-field Atom-Photon Technology - Near Field Scanning Optical Microscopy - Electrostatic.
NANO 225 Micro/Nanofabrication Characterization: Scanning Probe Microscopy 1.
Introduction to Atomic Force Microscopy
AFM. The cantilever holder The cantilever dimensions Tip position.
Tutorial 4 Derek Wright Wednesday, February 9 th, 2005.
Common scanning probe modes
Scanning Probe Microscopy Colin Folta Matt Hense ME381R 11/30/04.
Today –Homework #4 Due –Scanning Probe Microscopy, Optical Spectroscopy –11 am NanoLab Tour Tomorrow –Fill out project outline –Quiz #3 in regular classroom.
Atomic Force Microscopy (AFM)
Tuning Fork Scanning Probe Microscopy Mesoscopic Group Meeting November 29, 2007.
Why is AFM challenging? 1.Jump to contact: k>max(-   V TS /  z  (static) kA>max(-F TS  oscillating mode)  ideal amplitude is A~ ] 2. Non-monotonic.
Electric Force Microscopy (EFM)
Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: Office:
Donovan Sung EE235 Student Presentation 4/16/08 Chemical identification of individual surface atoms by atomic force microscopy.
ATOMIC FORCE MICROSCOPY
AFM Images Bacteria Mosquito eye DNA molecules t&view=article&id=51&Itemid=57.
EEM. Nanotechnology and Nanoelectronics
SPM Users Basic Training August 2010 Lecture VIII – AC Imaging Modes: ACAFM and MAC Imaging methods using oscillating cantilevers.
Atomic Force Microscopy (AFM)
Outline Sample preparation Instrument setting Data acquisition Imaging software Spring 2009AFM Lab.
Pooria Gill PhD of Nanobiotechnology Assistant Professor at MAZUMS In The Name of Allah.
Get to the point!.
Multiple Receptors Involved in Human Rhinovirus Attachment to Live Cells Christian Rankl, Ferry Kienberger, Linda Wildling, Jürgen Wruss, Hermann J. Gruber,
Metallurgha.ir1. Lecture 5 Advanced Topics II Signal, Noise and Bandwidth. Fundamental Limitations of force measurement metallurgha.ir2.
Get to the point!.
Scanning Probe Microscopy: Atomic Force Microscope
Scanning Tunneling Microscopy
Scanning Probe Microscopy
Characterization of CNT using Electrostatic Force Microscopy
Scanning Probe Microscopy History
7x7 surface have been removed and deposited.
Modelling of Atomic Force Microscope(AFM)
Scanning Probe Microscopy History
NANO 230 Micro/Nano characterization
INSPECTION TECHNIQUES
Atomic Force Microscope
Atomic Force Microscopy
AFM modes 1- Contact Mode
Presentation transcript:

Lecture 10. AFM

Introduction high-resolution type of scanning probe microscopy, with demonstrated resolution of fractions of a nanometer, more than 1000 times better than the optical diffraction limit.

How It Works consists of a cantilever with a sharp tip (probe) at its end that is used to scan the specimen surface cantilever is typically silicon or silicon nitride with a tip radius of curvature on the order of nanometers When the tip is brought into proximity of a sample surface, forces between the tip and the sample lead to a deflection of the cantilever according to Hooke's law Depending on the situation, forces that are measured in AFM include mechanical contact force, van der Waals forces, capillary forces, chemical bonding, electrostatic forces, magnetic forces (see magnetic force microscope, MFM), Casimir forces, solvation forces, etc As well as force, additional quantities may simultaneously be measured through the use of specialised types of probe (see scanning thermal microscopy, photothermal microspectroscopy, etc.).

Variety deflection is measured using a laser spot reflected from the top surface of the cantilever into an array of photodiodes optical interferometry capacitive sensing piezoresistive AFM cantilevers

Modes of AFM In the static mode operation, the static tip deflection is used as a feedback signal. Because the measurement of a static signal is prone to noise and drift, low stiffness cantilevers are used to boost the deflection signal. However, close to the surface of the sample, attractive forces can be quite strong, causing the tip to 'snap-in' to the surface. Thus static mode AFM is almost always done in contact where the overall force is repulsive. Consequently, this technique is typically called 'contact mode'. In contact mode, the force between the tip and the surface is kept constant during scanning by maintaining a constant deflection. In the dynamic mode, the cantilever is externally oscillated at or close to its fundamental resonance frequency or a harmonic. The oscillation amplitude, phase and resonance frequency are modified by tip-sample interaction forces; these changes in oscillation with respect to the external reference oscillation provide information about the sample's characteristics. Schemes for dynamic mode operation include frequency modulation and the more common amplitude modulation. In frequency modulation, changes in the oscillation frequency provide information about tip-sample interactions. Frequency can be measured with very high sensitivity and thus the frequency modulation mode allows for the use of very stiff cantilevers. Stiff cantilevers provide stability very close to the surface and, as a result, this technique was the first AFM technique to provide true atomic resolution in ultra-high vacuum conditions.

In tapping mode the cantilever is driven to oscillate up and down at near its resonance frequency by a small piezoelectric element mounted in the AFM tip holder. The amplitude of this oscillation is greater than 10 nm, typically 100 to 200 nm. Due to the interaction of forces acting on the cantilever when the tip comes close to the surface, Van der Waals force or dipole-dipole interaction, electrostatic forces, etc cause the amplitude of this oscillation to decrease as the tip gets closer to the sample. In non-contact mode, the tip of the cantilever does not contact the sample surface. The cantilever is instead oscillated at a frequency slightly above its resonance frequency where the amplitude of oscillation is typically a few nanometers (<10 nm). The van der Waals forces, which are strongest from 1 nm to 10 nm above the surface, or any other long range force which extends above the surface acts to decrease the resonance frequency of the cantilever. This decrease in resonance frequency combined with the feedback loop system maintains a constant oscillation amplitude or frequency by adjusting the average tip-to-sample distance.

AFM for protein analysis