D E S I R E Dose Estimation by Simulation of the ISS Radiation Environment Geant4 simulations of the Columbus/ISS radiation.

Slides:



Advertisements
Similar presentations
G.Santin, P Nieminen, H Evans, E Daly
Advertisements

BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE FOR SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
Stefan Roesler SC-RP/CERN on behalf of the CERN-SLAC RP Collaboration
Radiation Environment in a Human Phantom aboard the International Space Station during the Minimum of 23-rd Solar Cycle Semkova J. 1, Koleva R. 1, Maltchev.
P HI T S Exercise ( II ) : How to stop , ,  -rays and neutrons? Multi-Purpose Particle and Heavy Ion Transport code System title1 Feb revised.
CATANIA Feb 28th - Mar 1st 2011 F. Borsa (INAF - Osservatorio Astronomico di Brera) M. Ghigo (INAF - Osservatorio Astronomico di Brera)
S. Guatelli, M.G. Pia – INFN Sezione di Genova Geant4-SPENVIS Workshop 3-7 October 2005 Leuven, Belgium Radioprotection.
S. Guatelli IEEE 2004 – NSS - Rome Dosimetry for Interplanetary Missions: the Geant4 REMSIM application S. Guatelli 1, P. Nieminen 2, M.G. Pia 1 IEEE NSS,
Cosmic-Ray Antiproton Spatial Distributions Simulated in Magnetosphere Michio Fuki Faculty of Education, Kochi University 2-5-1, Akebono-cho, Kochi ,
EAS EXPERIMENT ON BOARD OF THE AIRBUS A380 J. N. Capdevielle, F. Cohen, PCC, College de France K. Jedrzejczak, B. Szabelska, J. Szabelski, T. Wibig The.
GSEM project SPENVIS/GEANT4 Workshop, Leuven, Belgium, October 2005 Daniel Haas, DPNC Genève Outline Description of GSEM HEP Range Telescope Radiation.
B. Quaghebeur, J. Wera, (D. Heynderickx), H. De Witte BIRA, Ringlaan 3, B-1180 Brussel, Belgium H.D.R. Evans, E.J. Daly ESA/ESTEC, Keplerlaan 1, NL-2200.
Danish Space Research Institute Danish Small Satellite Programme FH Space_Environment.ppt Slide # 1 Flemming Hansen MScEE, PhD Technology Manager.
Space radiation dosimetry and the fluorescent nuclear track detector Nakahiro Yasuda National Institute of Radiological Sciences.
Effects of Solar Energetic Particle Events on the Martian Surface and Atmosphere F Leblanc, DA Brain, JG Luhmann, GT Delory, RA Mewaldt, CM Cohen 2004.
Susanna Guatelli Radiation Shielding Simulation For Interplanetary Manned Missions S. Guatelli 1, B. Mascialino 1, P. Nieminen 2, M.G. Pia 1 1 INFN Genova,
S. Guatelli, M.G. Pia – INFN Sezione di Genova Monte Carlo April Radiation protection for interplanetary.
Budker Inst. of Physics IHEP Protvino MEPHI Moscow Pittsburg University.
UTILIZING SPENVIS FOR EARTH ORBIT ENVIRONMENTS ASSESSMENTS: RADIATION EXPOSURES, SEE, and SPACECRAFT CHARGING Brandon Reddell and Bill Atwell THE BOEING.
PLANETOCOSMICS L. Desorgher, M. Gurtner, E.O. Flückiger, and P. Nieminen Physikalisches Institut, University of Bern ESA/ESTEC.
Workshop on Physics on Nuclei at Extremes, Tokyo Institute of Technology, Institute for Nuclear Research and Nuclear Energy Bulgarian Academy.
Radiation conditions during the GAMMA-400 observations:
SOI detector Geant4-based studies to characterise the tissue-equivalence of SOI and diamond microdosimeteric detectors, under development at CMRP S. Dowdell,
30 September 2002Geant4 Workshop, CERN1 ESA Geant4 Activities ESA Space Environment & Effects Analysis Section P. Nieminen, E. Daly, H.D.R. Evans, A. Keating,
GRAS Validation and GEANT4 Electromagnetic Physics Parameters R. Lindberg, G. Santin; Space Environment and Effects Section, ESTEC.
System for Radiation Environment characterization (fluxes, doses, dose equivalents at Earth, Moon and Mars) on hourly thru yearly time frame Example: Snapshots.
11 February 2000Genova (I)1 ESA Space Environment & Effects Analysis Section Space Radiation Environment P. Nieminen, ESA/ESTEC, The Netherlands  Overview.
GCR Primaries (See Wilson et al. poster for latest CRaTER proton albedo map) RELATIVE CONTRIBUTIONS OF GALACTIC COSMIC RAYS AND LUNAR PARTICLE ALBEDO TO.
REMSIM Radiation Exposure and Mission Strategies for Interplanetary Manned Missions Susanna Guatelli, 9 th March 2004, Genova, Italy
Mars images courtesy of ESA Portal Multimedia Gallery Mars Radiation Environment Characterization Results, previous and ongoing activities Ana Keating.
Evaluation of the flux of CR nuclei inside the magnetosphere P. Bobik, G. Boella, M.J. Boschini, M. Gervasi, D. Grandi, K. Kudela, S. Pensotti, P.G. Rancoita.
Normalisation modelling sources Geant4 tutorial Paris, 4-8 June 2007 Giovanni Santin ESA / ESTEC Rhea System SA.
The PLANETOCOSMICS Geant4 application L. Desorgher Physikalisches Institut, University of Bern.
6 October 2005 Geant4 Workshop, Leuven, Belgium Geant4 Model of SIXS Particle Instrument and Preliminary Simulation Results Lehti, J. (ASRO) Valtonen,
Currently the Solar Energetic Particle Environment Models (SEPEM) system treats only protons within the interplanetary environment, and the shielding analysis.
Radiation on Planetary Surfaces M. S. Clowdsley 1, G. DeAngelis 2, J. W. Wilson 1, F. F. Badavi 3, and R. C. Singleterry 1 1 NASA Langley Research Center,
ESP & Psychic Solar Flare Models
Precision analysis of Geant4 condensed transport effects on energy deposition in detectors M. Batič 1,2, G. Hoff 1,3, M. G. Pia 1 1 INFN Sezione di Genova,
Effects of Surrounding Materials on Proton-Induced Energy Deposition in Large Silicon Diode Arrays Christina L. Howe 1, Robert A. Weller 1, Robert A. Reed.
LIP & ESA 18121/04/NL/CH MarsREC An integrated tool for Mars Radiation Environment Characterization and Effects 5º longitude.
Study of high energy cosmic rays by different components of back scattered radiation generated in the lunar regolith N. N. Kalmykov 1, A. A. Konstantinov.
Simulation of Interactions of Radiation with Biological Systems at the Cellular and DNA Level Based on Sponsored by Activity of.
Radiation Storms in the Near Space Environment Mikhail Panasyuk, Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University.
Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP , A. Borella1 Monte Carlo methods.
Contribution of simulation techniques to the space weather research Pavlos Paschalis [1] H. Mavromichalaki[1], L.I. Dorman[2], Ch. Plainaki[3] [1] Athens.
20 September 1999Geant4 Workshop1 in Space : Examples of Past and Future Missions and Experiments P. Nieminen, ESA/ESTEC, The Netherlands.
1 Neutron Effective Dose calculation behind Concrete Shielding of Charge Particle Accelerators with Energy up to 100 MeV V. E Aleinikov, L. G. Beskrovnaja,
Theoretical Modeling of the Inner Zone Using GEANT4 Simulations as Inputs R. S. Selesnick and M. D. Looper The Aerospace Corp., Los Angeles, CA USA R.
ESTRO, Geneva 2003 The importance of nuclear interactions for dose calculations in proton therapy M.Soukup 1, M.Fippel 2, F. Nuesslin 2 1 Department of.
Geant4 in Space selected recent investigations
© The Aerospace Corporation 2010 Use of Geant4 Simulations to Understand LRO/CRaTER Observations M. D. Looper, J. E. Mazur, J. B. Blake, The Aerospace.
Pedro Brogueira 1, Patrícia Gonçalves 2, Ana Keating 2, Dalmiro Maia 3, Mário Pimenta 2, Bernardo Tomé 2 1 IST, Instituto Superior Técnico, 2 LIP, Laboratório.
The highly miniaturised radiation monitor Edward Mitchell * On behalf of the HMRM collaboration (STFC Rutherford Appleton Laboratory & Imperial College.
Encontro com a Ciência e a Tecnologia em Portugal 4-7 Julho 2010.
Multispacecraft observation of solar particle events contribution in the space radiation exposure on electronic equipment at different orbits Vasily S.
Physics-Based Modeling Robert Reedy (UNM), Kyeong Kim (U. Ariz
Project Structure Advanced Neutron Spectrometer on the International Space Station (ANS-ISS) Mark Christl NASA/MSFC Oct 23, 2015 Honolulu, HI 1 1.
and 9 February 2000 CHEP2000 ESA Space Environment &
Alexander Mishev and Ilya Usoskin
Geant4 REMSIM application
N. Stoffle University of Houston
Gamma-ray Albedo of the Moon Igor V. Moskalenko (Stanford) & Troy A
SPACE RADIATION DOSIMETRY
and 9 February 2000 CHEP2000 ESA Space Environment &
Radioprotection for interplanetary manned missions
P. Nieminen, E. Daly, A. Mohammadzadeh, H.D.R. Evans, G. Santin
CRaTER Science Requirements
Recent, undergoing and planned ESA-supported activities concerning development, use and promotion of the Geant4 toolkit E. Daly, R. Nartallo, P. Nieminen.
Geant4 physics validation: Bragg Peak
The Geant4 Hadrontherapy Advanced Example
Presentation transcript:

D E S I R E Dose Estimation by Simulation of the ISS Radiation Environment Geant4 simulations of the Columbus/ISS radiation environment T. Ersmark 1, P. Carlson 1, E. Daly 2, C. Fuglesang 3, I. Gudowska 4, B. Lund-Jensen 1, R. Nartallo 2, P. Nieminen 2, M. Pearce 1, G. Santin 2, N. Sobolevsky 5 1 Royal Institute of Technology (KTH) (Stockholm) 2 ESA-ESTEC (Noordwijk) 3 EAC/JSC (Cologne/Houston) 4 Karolinska Institutet (Stockholm) 5 Institute for Nuclear Research (Moscow)

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 2/19 Outline 1.The DESIRE project 2.Geant4 physics validation studies 3.Columbus and ISS geometries 4.Radiation environment models 5.Simulation results 6.Conclusions and future

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 3/19 The DESIRE project ”Dose Estimation by Simulation of the ISS Radiation Environment” Aimed at accurate calculations of the radiation flux and doses to astronauts inside the European ISS laboratory Columbus. Utilizes Geant4 for radiation transport. Funded by ESA (15613/NL/LvH) and SNSB. 1.Validation and comparisons of Geant4 physics models to… –Experiments –NASA BRYN-/HZETRN programs –SHIELD-HIT Monte Carlo program 2.Implementation of Columbus and ISS geometries in Geant4. 3.Evaluation of incident radiation environment models. 4.Full simulations of particle fluxes and doses inside Columbus.

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 4/19 Geant4 physics validation studies Incident protons with energies MeV. –Neutron production –Energy deposition –Proton penetration –Water, Beryllium, Carbon, Aluminum, Iron, Uranium Comparisons to Los Alamos experimental data (Meier, Nucl. Sci. Eng. 102 and 104), SHIELD-HIT, BRYNTRN. Published in IEEE Trans. Nucl. Sci. 51,1378 (2004). Summary: Energy deposition/proton penetration ok. Secondary neutron production ok after release of cascade models (since 2003). 113 MeV p on 4 cm Al256 MeV p on 12 cm Al

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 5/19 Columbus and ISS geometries “Columbus1” –Simple cylinder-like geometry –10 volumes; MDPS1/2/3 + hull –4200 kg “Columbus3” –Detailed geometry –800 volumes –16750 kg ISS – volumes –352 tons (369 tons)...so 4 combinations

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 6/19 The ISS Geant4 geometry Geant4 JSC/SEMDA spec. Hull... Interior... Cabin (CAM)

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 7/19 The “Columbus3” Geant4 geometry

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 8/19 Radiation environment models Studied incident radiation fields –Trapped protons (isotropic and anisotropic) –GCR protons –SPE protons –(Cosmic ray albedo neutrons) –(Trapped electrons) Other radiation fields –GCR ions –Solar ions 51.6   330, 380, 430 km orbit Web interfaces to models –SPENVIS (”SPV”) ( –CREME96 (”C96”) ( –SIREST (”SRS”) (

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 9/19 Incident spectra Incident particle spectra at 380 km and solar min Belt protons GCR protons SPE protons CR albedo neutrons

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 10/19 Belt proton altitude dependence and anisotropy Incident proton spectra at 330 km, 380 km, 430 km Solar minimum/maximum Anisotropy; spectra for protons coming from port and startboard- backward (at solar-minimum and 380 km)

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 11/19 Simulation results Spectra of particles entering Columbus Doses at 10 mm depth in ICRU sphere –Statistics km and solar minimum unless noted

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 12/19 Belt protons Incident belt (AP8-MIN) protons at 380 km. Penetrating protons and neutrons. Belt proton doses at three altitudes for different geometry configurations.

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 13/19 On-going study of belt proton anisotropy Spectra for protons coming from port startboard-backward SPENVIS AP8 Anisotropy model ”UP” (Badhwar/Konradi)

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 14/19 Cosmic ray protons Penetrating primary/secondary protons and secondary neutrons due to incident cosmic ray protons (CREME96-min, 380 km)

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 15/19 Cosmic ray protons; Col3withISS Spectra of various particle species entering Columbus in the ”Col3withISS” geometry

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 16/19 Cosmic ray proton doses Dose rates in ICRU sphere due to incident cosmic ray protons; itemized by geometry model and particle type at surface of sphere

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 17/19 SPE protons & albedo neutrons SPE particle spectra and resulting dosesAlbedo neutron spectra and secondary protons

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 18/19 Modell comparisons; Col3withISS Belt protons: 135 vs. 520  Gy/d (!) CR protons: 60 vs. 115  Gy/d Albedo neutrons unimportant (several previous studies)

SPENVIS and Geant4 Workshop, Leuven, , Tore Ersmark (KTH) 19/19 Conclusions and future A detailed model of Columbus and ISS (14A) has been implemented as Geant4 geometries. Dose rates has been calculated for standard incident radiation field models –Belt protons (AP8-MIN): 135  Gy/d –Cosmic ray protons (CREME96, min): 60  Gy/d –Cosmic ray albedo neutrons (SIREST): 0.5  Gy/d Study of the influence of belt proton anisotropy in progress. GCR- and solar ions will be studied the next few months.