Revised tholin profile for the atmosphere of Titan Mao-Chang Liang 1, J. A. Kammer, X. Zhang 3, D. Shemansky 4, Y. L. Yung 2 1 Research Center for Environmental.

Slides:



Advertisements
Similar presentations
Plasma-induced Sputtering & Heating of Titan’s Atmosphere R. E. Johnson & O.J. Tucker Goal Understand role of the plasma in the evolution of Titan’s atmosphere.
Advertisements

Photochemistry in the Atmospheres of Hot Jupiters Yuk L. Yung 1, Mao-Chang Liang 2, Michael Line 1 and Giovanna Tinetti 3 1 Division of Geological and.
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer 1, D. E. Shemansky 2, X. Zhang 1, Y. L. Yung 1 1 Division of Geological and Planetary Sciences,
Modeling the Distribution of H 2 O and HDO in the upper atmosphere of Venus Mao-Chang Liang Research Center for Environmental Changes, Academia Sinica.
Distribution of H 2 O and SO 2 in the atmosphere of Venus Yung Y. 1, Zhang X. 1, Liang M.-C. 2 and Parkinson C. 3 1 California Institute of Technology.
CO 2 in the middle troposphere Chang-Yu Ting 1, Mao-Chang Liang 1, Xun Jiang 2, and Yuk L. Yung 3 ¤ Abstract Measurements of CO 2 in the middle troposphere.
Modeling the Distribution of H 2 O and HDO in the upper atmosphere of Venus Mao-Chang Liang Research Center for Environmental Changes, Academia Sinica.
Modeling Carbon Species in the Atmosphere of Neptune and Comparison with Spitzer Observations Xi Zhang 1, Mao-Chang Liang 2, Daniel Feldman 1, Julianne.
ABSORPTION BANDS The many absorption bands at 2.3  m ( cm -1 ) and the one band near 1.6  m (6000 cm -1 ) will be considered (Figure 1). Other.
Radiative Modeling of the Atmosphere of Neptune Y. Yung 1, X. Zhang 1, R. Shia 1, M. Liang 2, G. Orton 3, A. Mainzer 3 and M. Burgdorf 4 1 Caltech, USA.
2002 PLUTO OCCULTATIONS J. Elliot et al. Observations were made of an occultation of the star by Pluto. Previous observations in 1988 showed an isothermal.
Detecting molecules in the atmospheres of transit Exoplanets Giovanna Tinetti University College London Mao-Chang Liang Academia Sinica, Taiwan.
Lunar Observations of Changes in the Earth’s Albedo (LOCEA) Alexander Ruzmaikin Jet Propulsion Laboratory, California Institute of Technology in collaboration.
Photochemical Control of the Distribution of Venusian Water and Comparison to Venus Express SOIR Observations Christopher D. Parkinson 1, Yuk L. Yung 2,
Liang and Yung, Isotopic Constraints on the Global Budget and Trend of Atmospheric Nitrous Oxide Isotopic Constraints on the Global Budget and Trend of.
Negative ions at Titan: tholins for Titan’s haze? Andrew Coates, Mullard Space Science Laboratory, UCL, UK With thanks to Frank Crary, Dave Young, Hunter.
Oxidants on Small Icy Bodies and Snowball Earth Yuk L. Yung (Caltech) Mao-Chang Liang (Academia Sinica)
 Introduction  Surface Albedo  Albedo on different surfaces  Seasonal change in albedo  Aerosol radiative forcing  Spectrometer (measure the surface.
Airglow on Titan During Eclipse R. A. West 1, J. M. Ajello 1, M. H. Stevens 2, D. F. Strobel 3, G. R. Gladstone 4, J.S. Evans 5, E.T. Bradley 6 1 Jet Propulsion.
The state of the plasma sheet and atmosphere at Europa D. E. Shemansky 1, Y. L. Yung 2, X. Liu 1, J. Yoshii 1, C. J. Hansen 3, A. Hendrix 4, L. W. Esposito.
1 The Organic Aerosols of Titan’s Atmosphere Christophe Sotin, Patricia M. Beauchamp and Wayne Zimmerman Jet Propulsion Laboratory, California Institute.
Moons of Saturn 14 October Iapetus Mimas.
Influence of Tropical Biennial Oscillation on Carbon Dioxide Jingqian Wang 1, Xun Jiang 1, Moustafa T. Chahine 2, Edward T. Olsen 2, Luke L. Chen 2, Maochang.
ESTIMATION OF SOLAR RADIATIVE IMPACT DUE TO BIOMASS BURNING OVER THE AFRICAN CONTINENT Y. Govaerts (1), G. Myhre (2), J. M. Haywood (3), T. K. Berntsen.
Mao-Chang Liang 1,2, Claire Newman 3, Yuk L. Yung 3 1 Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan 2 Graduate Institute of.
Yuk Yung (Caltech), M. C. Liang (Academia Sinica), X. Zhang (Caltech),
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
X. Zhang 1, R. Shia 1, M. Liang 2, C. Newman 1, D. Shemansky 3, Y. Yung 1, 1 Division of Geological and Planetary Sciences, California Institute of Technology,
Jovian Stratospheric Circulation: Insights from Cassini Observations X. Zhang (1), R. Cosentino (2), R. Morales-Juberias (2), R. A. West (3), S. Coffing.
The High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is sponsored by.
Liang and Yung, Isotopic Constraints on the Global Budget and Trend of Atmospheric Nitrous Oxide Isotopic Constraints on the Global Budget and Trend of.
Atmospheric extinction Suppose that Earth’s atmosphere has mass absorption coefficient  at wavelength. If f 0 is flux of incoming beam above atmosphere,
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer †, D. E. Shemansky ‡, X. Zhang †, and Y. L. Yung † † California Institute of Technology, Pasadena,
Results We first best-fit the zonal wind and temperature simulated in the 3D PlanetWRF using the semi- analytic 2D model with,,, and. See Fig 2. The similarity.
Rev 131 Enceladus’ Plume Solar Occultation LW Esposito and UVIS Team 14 June 2010.
Micro-structural size properties of Saturn’s rings determined from ultraviolet measurements made by the Cassini Ultraviolet Imaging Spectrograph Todd Bradley.
The Composition and Structure of Enceladus’ Plume from the Cassini UVIS Solar Occultation C. J. Hansen, L. Esposito, D. Shemansky, A. I. F. Stewart, A.
Enceladus’ Plume and Jets: UVIS Occultation Observations June 2011.
Fifth Workshop on Titan Chemistry April 2011, Kauai, Hawaii Organic Synthesis in the Atmosphere of Titan: Modeling and Recent Observations Yuk Yung.
Titan Glows in the Dark – West et al. and Ajello et al., 2012 R. A.. West, J. M. Ajello, M. H. Stevens, D. F. Strobel, G. R. Gladstone, J. S. Evans, and.
Haze and cloud in Pluto atmosphere Pascal Rannou, Franck Montmessin Service d'Aéronomie/IPSL, Université Versailles-St-Quentin.
SOIR Data Workshop SOIR science status A.C. Vandaele, A. Mahieux, S. Robert, R. Drummond, V. Wilquet, E. Neefs, B. Ristic, S. Berkenbosch, R. Clairquin.
R. A. WEST, J. M. AJELLO, M. H. STEVENS, D. F. STROBEL, G. R. GLADSTONE, J.S. EVANS, T. BRADLEY, TITAN AIRGLOW DURING ECLIPSE 19 June 2012R. West 1.
Quarterly 1 NASA Quarterly UVIS Q (February – April 2014)
Titan Airglow Spectra From 2004 and 2008 and Laboratory Results for UVIS, ISS and VIMS (800-11,000 Å) JOSEPH AJELLO JPL JACQUES GUSTIN MICHAEL STEVENS.
Titan: FUV Limb Spectra From 2004 and EUV Laboratory Cross Sections and Observations JOSEPH AJELLO JPL MICHAEL STEVENS NRL JACQUES GUSTIN LPAP GREG.
Observations of Enceladus ’ Plume from Cassini ’ s UltraViolet Imaging Spectrograph (UVIS) C. Hansen, L. Esposito, J. Colwell, A. Hendrix, B. Meinke, I.
Saturn’s Auroras from the Cassini Ultraviolet Imaging Spectrograph Wayne Pryor Robert West Ian Stewart Don Shemansky Joseph Ajello Larry Esposito Joshua.
Titan Airglow: FUV & EUV 2009 UVIS Spectra of Airglow During Day, Night & Eclipse : JOSEPH AJELLO JPL MICHAEL STEVENS NRL ROBERT WEST JPL JACQUES GUSTIN.
Enceladus water jet models from UVIS star occultations
Icy Moon Occultations: the Search for Volatiles
D. E. Shemansky† , J. A. Kammer ‡ , X. Zhang ‡ & Y. L. Yung‡
UVIS Saturn Atmosphere Occultation Prospectus
UVIS Data Analysis and Modeling: Saturn FUV images
Latest Results of HDAC analysis
HDAC analysis: Hydrogen in Titan‘s exosphere
Titan: FUV & EUV Spectra Limb, Dayglow, Nightglow & Eclipse
Photochemical processes on Titan
Titan tholin properties from occultation and emission observations
Saturn upper atmosphere structure
* 07/16/96 Constraints on Titan’s Hign Haze from Cassini UVIS/ISS and Huygens DISR Observations *
Jet Propulsion Lab, California Institute of Technology
Titan H2O Clouds + ISS/UVIS
Final results of HDAC analysis
Monitoring Saturn's Upper Atmosphere Density Variations Using
Cassini UVIS solar occultation
UVIS Saturn EUVFUV Data Analysis
Revised tholin profile for the atmosphere of Titan
Titan Airglow FUV Limb Spectra From Cassini UVIS Observations
UVIS Titan T0, TA Analysis
Presentation transcript:

Revised tholin profile for the atmosphere of Titan Mao-Chang Liang 1, J. A. Kammer, X. Zhang 3, D. Shemansky 4, Y. L. Yung 2 1 Research Center for Environmental Change, Academia Sinica 2 Division of Geological and Planetary Sciences, California Institute of Technology 3 University of Arizona 4 Space Environment Technologies

 Stellar occulations  Aerosol extinction profiles  Tb  Vi, Tb Sco, T21  Eri, T41  CMa (ingress & egress), T47  Uma  Solar occulation  T0  Scattering spectrum at 1040 km Cassini UVIS

Lorenz + Mitton 2002

Solar Scattering Stellar Occultation J. Ajello

T0 olar reflection spectrum  High resolution slit; Integration time sec;  Red line: Effective altitude 1040 km; mid pixel 1203 km  Green line: Effective altitude 1612 km  Cyan line: best fitting model spectrum

T0 UVIS extinction spectrum Liang et al tholin CH 4 Impact: 514 km

UVIS extinction profiles

Modeling – No production/loss g cm A ~10 -3 g cm -3 eddy g cm g cm -3

Solution #1 – C 2 H 2 -> tholin g cm -2 3  g cm -2 size increase 76 A -> 3300 A

Extinction coefficient Particle radius (A)

Fractal particles  Aggregate of molecules at ~1000 km  monomer: 10 A  Mie radius: 76 A  density: ~10 -3 g cm -3  -> fractal dimension: ~1.5  Main haze (<300 km)  monomer: 66 nm  fractional dimension: 2

 Low density fractal particle  ~10 -3 g cm -3 abve ~800 km  Particle size of 76 A at 1040 km  Increase to ~3300 A below ~500 km, compared to 660 A monomer size below 300 km  Mass flux from the top is ~ g cm -2  No net production between km Summary