KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Benjamin Schmidt, IEKP, KIT Campus North,

Slides:



Advertisements
Similar presentations
Edelweiss-II : status and first results A new generation of background-free bolometers for WIMP search X-F. Navick - CEA Saclay, IRFU, France LTD13 – Stanford.
Advertisements

Status of XMASS experiment Shigetaka Moriyama Institute for Cosmic Ray Research, University of Tokyo For the XMASS collaboration September 10 th, 2013.
EDELWEISS-I last results EDELWEISS-II prospects for dark matter direct detection CEA-Saclay DAPNIA and DRECAM CRTBT Grenoble CSNSM Orsay IAP Paris IPN.
Dark Matter search with EDELWEISS and beyond Gilles Gerbier CEA Saclay – IRFU Rencontres de Moriond- VHEPU march 15 th Expérience pour DEtecter.
DMSAG 14/8/06 Mark Boulay Towards Dark Matter with DEAP at SNOLAB Mark Boulay Canada Research Chair in Particle Astrophysics Queen’s University DEAP-1:
Institut für Kernphysik Markus Horn ILIAS-N3, BSNS-working group meeting Valencia, Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft.
Readout System for the Edelweiss Dark Matter search
Status of Ultra-low Energy HPGe Detector for low-mass WIMP search Li Xin (Tsinghua University) KIMS collaboration Oct.22nd, 2005.
Background issues for the Cryogenic Dark Matter Search Laura Baudis Stanford University.
Direct search for Dark Matter with the EDELWEISS-II experiment: status and results Claudia Nones CSNSM-Orsay On behalf of the EDELWEISS-II collaboration.
R. Lemrani CEA Saclay Search for Dark Matter with EDELWEISS Status and future NDM ’06 Paris, September 3-9, 2006.
Possible merits of high pressure Xe gas for dark matter detection C J Martoff (Temple) & P F Smith (RAL, Temple) most dark matter experiments use cryogenic.
1 Edelweiss-II status Eric Armengaud (CEA), for the Edelweiss Collaboration Axion-WIMPs training workshop, Patras, 22/06/2007.
Present and Future Cryogenic Dark Matter Search in Europe Wolfgang Rau, Technische Universität München CRESSTCRESST EURECA ryogenic are vent earch with.
30 Ge & Si Crystals Arranged in verticals stacks of 6 called “towers” Shielding composed of lead, poly, and a muon veto not described. 7.6 cm diameter.
Possible measurements with crystals in NA Test of single crystals for the SPS and LHC beam collimation.
1 Low radioactivity issues in EDELWEISS-II Low Radioactivity Techniques, LRT 2010 Sudbury, August 2010 Pia Loaiza, Laboratoire Souterrain de Modane,
GERDA Meeting GERDA – Meeting, Nov.9-11, GERDA Meeting Eberhard Karls Universität Tübingen.
EDELWEISS-II : Status and future
Dan Bauer Fermilab Users Meeting June 3, 2004 Status of Cold Dark Matter Searches Dan Bauer, Fermilab Introduction Scientific case compelling for cold.
Status of DRIFT II Ed Daw representing the DRIFT collaboration: Univ. of Sheffield, Univ. of Edinburgh, Occidental College, Univ. of New Mexico Overview.
T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini,
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
Annual Modulation Study of Dark Matter Using CsI(Tl) Crystals In KIMS Experiment J.H. Choi (Seoul National University) SUSY2012, Beijing.
Direct Dark Matter Searches
Cryogenic particle detection at the Canfranc Underground Laboratory First International Workshop for the Design of the ANDES Underground Laboratory Centro.
From CDMSII to SuperCDMS Nader Mirabolfathi UC Berkeley INPAC meeting, May 2007, Berkeley (Marina) CDMSII : Current Status CDMSII Perspective Motivation.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Dark Matter Search with SuperCDMS Results, Status and Future Wolfgang Rau Queen’s University.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University.
A Study of Background Particles for the Implementation of a Neutron Veto into SuperCDMS Johanna-Laina Fischer 1, Dr. Lauren Hsu 2 1 Physics and Space Sciences.
HEP-Aachen/16-24 July 2003 L.Chabert IPNL Latest results ot the EDELWEISS experiment : L.Chabert Institut de Physique Nucléaire de Lyon ● CEA-Saclay DAPNIA/DRECAM.
The European Future of Dark Matter Searches with Cryogenic Detectors H Kraus University of Oxford EURECA.
Michael Unrau, Institut für Kernphysik Analyse von Bolometersignalen der EDELWEISS Dark Matter Suche EDELWEISS dark matter searchFull InterDigitized detector.
The Tokyo Dark Matter Experiment NDM03 13 Jun. 2003, Nara Hiroyuki Sekiya University of Tokyo.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
KPS Chonbuk University 2005/10/22 HYUNSU LEE Status of the KIMS dark matter search experiment with CsI(Tl) crystals Hyun Su Lee Seoul National.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
Muon flux at Y2L and reconstruction of muon tracks
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
? At Yangyang beach, looking for something in the swamp of particles and waves. 1 The recent results from KIMS Seung Cheon Kim (Seoul National University)
Kamioka Kyoto We feel WIMP wind on the earth NEWAGE Direction-sensitive direct dark matter search with μ-TPC * 1.Dark.
EDELWEISS-II : Status and future Véronique SANGLARD CNRS/IN2P3/IPNLyon
Ray Bunker (UCSB) – APS – April 17 th, 2005 CDMS SUF Run 21 Low-Mass WIMP Search Ray Bunker Jan 17 th -DOE UCSB Review.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
PyungChang 2006/02/06 HYUNSU LEE CsI(Tl) crystals for WIMP search Hyun Su Lee Seoul National University (For The KIMS Collaboration)
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University 1W. Rau – IPA 2014.
Potential for Dark Matter Direct Searches in Australia Professor Elisabetta Barberio The University of Melbourne.
1 CRESST Cryogenic Rare Event Search with Superconducting Thermometers Jens Schmaler for the CRESST group at MPI MPI Project Review December 14, 2009.
Low Mass WIMP Search with the CDMS Low Ionization Threshold Experiment Wolfgang Rau Queen’s University Kingston.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
A Search for Cold Dark Matter with Cryogenic Detectors at Frejus Underground Laboratory * EDELWEISS experiment 1.Experiment status and results for first.
WIMPs Direct Search with Dual Light-emitting Crystals Xilei Sun IHEP International Symposium on Neutrino Physics and Beyond
Leo Stodolsky 80th anniversary
From Edelweiss I to Edelweiss II
University of South Dakota
Muon and Neutron detector of KIMS experiment
Harry Nelson UCSB DUSEL Henderson at Stony Brook May 5, 2006
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
Irina Bavykina, MPI f. Physik
Gilles Gerbier for EDELWEISS collab.
Status of Neutron flux Analysis in KIMS experiment
BACKGROUND STUDY IN CRESST
LUX: A Large Underground Xenon detector WIMP Search
Davide Franco for the Borexino Collaboration Milano University & INFN
PERFORMANCE OF THE METAL RADIATION MONITORING SYSTEMS
Presentation transcript:

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Benjamin Schmidt, IEKP, KIT Campus North, EDELWEISS experiment Photo by Böhringer Friedrich Data analysis and background investigation in the EDELWEISS direct dark matter search

EDELWEISS, IEKP, KIT 2 The corner of the dark we are looking at Benjamin Schmidt Earth moves through DM halo ρ DM = 0.3 GeV/cm 3 E R ~ 10 keV ≈ 230 km/s M ~ 100 GeV/c 2 qq   t t t Scattering Annihilation Production

EDELWEISS, IEKP, KIT 3 WIMP(  ) direct detection E R ~ 10 keV, Count rate: < 1 evt / (kg·year) Benjamin Schmidt Heat Ionization Light LXe, LAr NaI, LXe, LAr Ge, Si CaWO 4, BGO Al 2 O 3, LiF 1% energy fastest, no surface effects 10% energy 100% energy slowest, cryogenics WIMP Target Ge, CS 2, C 3 F 8, He 3

EDELWEISS, IEKP, KIT 4 The EDELWEISS experiment Benjamin Schmidt Polyethylene shield Pb shield Cryostat with bolometers µ-veto µ-n counter  Sensitivity Goal:   -n = a few· cm 2 (< evt/kg.d) Cryogenic installation (18 mK) : Can host up to 40 kg of bolometer Shieldings : Clean room + deradonized air Active muon veto (>98% coverage) PE shield 50 cm Lead shield 20 cm Background studies : Radon detector down to few mBq/m 3 thermal neutron monitoring (He 3 det.) Muon-veto – bolometer coincidences Strong AmBe source calibrations Study of muon induced neutrons (liquid scintillator 1 m 3 neutron counter) Shielding: ~ 4850 mwe  -flux (lab): ~ 5  / m 2 / day µ

EDELWEISS, IEKP, KIT 5 Muon-induced background Muons cause high energetic electron recoils However, muon-induced secondaries and especially muon-induced neutrons constitute low energetic background that scatters off nuclei Before veto: (WIMPlike) evts/(kg·d) Benjamin Schmidt -All events -Fiducial events -Potential background for DM search Muon induced bolometer events (1504 kg·d)

EDELWEISS, IEKP, KIT 6 Quantification of muon flux and muon veto efficiency – measurements and MC simulation Muon veto efficiency 1 st method: (Measurement only) ε = (candidates in bolos/ evts in muon veto system) ε ≥ 92,8% (90%CL) (34/34 observed) 2 nd method: (Measurement + MC simulation) Determine trigger efficiency of each muon veto module; Simulate experiment with measured efficiency curves ε = (97.7 ± 1.5) % Irreducible background flux 2·10 -4 evts/(kg·d) (MPV) Muon flux (horizontal area) Measurement + MC simulation: (5.4 ± )  /m 2 /d Benjamin Schmidt

EDELWEISS, IEKP, KIT 7 Calibrated Landau spectrum Benjamin Schmidt 6 MeV cut  = 95.5%  = 949  = 989

EDELWEISS, IEKP, KIT 8 Determination of single module efficiencies with trigger probability as funciton of energy Correction of measured µ-spectrum with energy dependent efficiency (bottom left in red) Single module efficiency: # muon spectrum / # corrected muon spectrum System efficiency via combination of known angular dependent muon flux with single module efficiencies ε ≥ 94,9% Plastic scintillator module 3 Efficiency of the µ-veto system - Method 3

EDELWEISS, IEKP, KIT 9 Topography of muon-induced events Benjamin Schmidt Distance of muon track to detectors -All detected muons (scaled) -Muons with secondaries in bolometers (coincidences) -Coincidences E Bolo < 1 MeV -Coincidences E Bolo > 1 MeV Lead identified as main target for the production of muon-induced neutrons Muon induced events produce multiple hits – 2 nd handle for rejection Benefits from more detectors and new PE shield in EDW-3

EDELWEISS, IEKP, KIT 10Benjamin Schmidt A: +4 V B: 1.5V C: 4 V D: +1.5V Nuclear recoil event discrimination & Surface event rejection- principle Bulk/Fiducial event Charge collected on electrodes A&C Surface event Charge collected on electrodes A&B NTD Phonon/Heat sensor = calorimetric measurement of total energy (T=18 mK,  T  0.2  K/keV ) Al electrodes Ionization measurement ( sub-keV resolution) Ionization yield Q = E I /E Rec nuclear recoils have ~1/3 Q of e-recoils Event discrimination via simultaneous charge and phonon measurement Fiducial volume Count rate: < 1 evt/kg/year! WIMP 100 GeV/c 2 Scatt. WIMP Recoil nucleus  E R ~10 keV A AA B B D D C C

EDELWEISS, IEKP, KIT 11 Outlook on data analysis Tasks: 1 st optimization of noise selection in optimal filter 2 nd adaptation of filtering techniques to new hardware Benjamin Schmidt Goal: improve stability and performance of optimal filter potential gain in low mass WIMP region Time domain Frequency domain

EDELWEISS, IEKP, KIT 12 Tasks: Investigation of potential of new hardware Currently a new DAQ-system is being developed at KIT (talk by B. Siebenborn) Features fast 40 MHz read-out of ionization channels Time-resolved measurements of charge propagation  Better understanding of detectors plus new possibilities for surface event discrimination Benjamin Schmidt Fiducial Volume > 600 g

EDELWEISS, IEKP, KIT 13 Results expected for background free measurement Benjamin Schmidt

EDELWEISS, IEKP, KIT 14 While I have got the word: The hike today The easy way - just follow me o’clock from the castle There are also GPS-data and descriptions available das-wildromantische- monbachtal/ /download.html#axzz2COBW0Gc2 Benjamin Schmidt

EDELWEISS, IEKP, KIT 15Benjamin Schmidt

EDELWEISS, IEKP, KIT 16 Upgrades towards EDELWEISS-3 Reducing background events Benjamin Schmidt

EDELWEISS, IEKP, KIT 17Benjamin Schmidt Outlook: µ-veto system of EURECA Requirements: 500 kg year exposure with expectation of < 1 evt Idea: Water Cherenkov detectors Attenuate n flux Active µ-veto system Minimize high-z material near cryostat Better mass to surface ratio for 1t scale experiment Assume: Minimized high-z material Γ n (n-yield per detector mass) Large number of crystals but higher mass/crystal 0.5 Γ single bolo interactions Need  86.3 %