Take out tables. On a separate sheet: Make a list of every equation we’ve already used in this class that has the velocity term in it.

Slides:



Advertisements
Similar presentations
Ch. 9 Linear Momentum.
Advertisements

Aim: How can we explain momentum and impulse? Do Now: Which is easier to do: Stop a skateboard traveling at 5 m/s or stop a car traveling at 5 m/s? Why?
Momentum and Impulse.
Chapter 9:Linear Momentum 9-1 Momentum and Its Relation to Force 9-2 Conservation of Momentum 9-3 Collisions and Impulse 9-4 Conservation of Energy and.
Impulse, Momentum and Collisions
MOMENTUM AND IMPULSE Chapter 7.
Momentum and Impulse So far we’ve studied the properties of a single object; i.e. its motion and energy How do we analyze the motion of two or more objects.
nfl football momentum Momentum is a commonly used term in sports. A team that has the momentum is on the move and is going to take some effort to stop.
Aim: What is the law of conservation of momentum? Do Now: A 20 kg object traveling at 20 m/s stops in 6 s. What is the change in momentum? Δp = mΔv Δp.
Momentum Impulse, Linear Momentum, Collisions Linear Momentum Product of mass and linear velocity Symbol is p; units are kgm/s p = mv Vector whose direction.
Linear Momentum & Impulse
AP Physics Impulse and Momentum. Which do you think has more momentum?
Chapter 7: Linear Momentum (p)
Momentum and Impulse.
Principles of Physics. - property of an object related to its mass and velocity. - “mass in motion” or “inertia in motion” p = momentum (vector) p = mvm.
Momentum – The Basics Momentum is mass in motion (or inertia in motion) Momentum is abbreviated as the letter p! Momentum is mass x velocity (p = mv) Both.
Momentum Chapter 8. Momentum Chapter 8 Objectives Define momentum. Define impulse and describe how it affects changes in momentum. Explain why an impulse.
Chapter 7: Linear Momentum CQ: 2 Problems: 1, 7, 22, 41, 45, 47. Momentum & Impulse Conservation of Momentum Types of Collisions 1.
Momentum Momentum is a vector quantity since velocity is a vector.
AP Physics I.D Impulse and Momentum. 7.1 Impulse-Momentum Theorem.
Chapter-7 Momentum and Impulse 1Momentum 2Impulse 3 Conservation of Momentum 4 Recoil 5 Elastic and Inelastic Collisions 6 Collisions at an Angle: An Automobile.
Linear Momentum why is more force needed to stop a train than a car if both travel at the same speed? why does a little tiny bullet have so much force.
MOMENTUM Definition: Momentum (Symbol : ….) is defined as the product of the ………….. and ……………. of a moving body. Momentum p = units: ……………. N.B. Since.
Momentum and Its Conservation
Chapter 6 Momentum and Impulse
Unit 8 Notes Momentum. p=mv In the last unit, we learned about conservation of energy. In this unit, we see conservation of momentum Momentum (p) is equal.
Chapter 6 Momentum and Impulse. Momentum The product of an object’s mass and velocity: p = mv Momentum, p, and velocity, v, are vector quantities, meaning.
Momentum A measure of how difficult it is to change an object’s motion (to make it stop or swerve). On what does this difficulty depend? –More mass; more.
Chapter 7: Linear Momentum Linear momentum is: – the product of mass and velocity – Represented by the variable p – Equal to mv, where m is the mass of.
Linear Momentum Impulse & Collisions. What is momentum?  Momentum is a measure of how hard it is to stop or turn a moving object.  What characteristics.
Momentum!!! Physics Mr. Padilla.
MOMENTUM the product of mass and velocity Units are kgm/s, or any mass velocity combo Example: Which has more momentum, a 8000-kg hippo trotting at 1.5.
KineticE k = ½ mv 2 PotentialE p = mgh HeatE H = cm  THeatE H = ml (changing temperature) (changing state) ElectricalE E = Pt = IVtlightsound nuclear.
Momentum.
Energy Momentum, Collisions, Impulse. Momentum A measure of how hard it is to stop a moving object A measure of how hard it is to stop a moving object.
Topic 2.2.  When have you heard this term? Some examples:  The Maple Leafs have won 5 straight games and they are building momentum towards the playoffs.
Momentum Introduction to Momentum. What is Momentum? The quantity of motion of a moving body Depends on mass and velocity Measured by multiplying mass.
Would you rather be hit by a tennis ball or a bowling ball?
This lesson Conservation of linear momentum.
Conservation of Momentum In the absence of an outside force, the momentum of a system will remain unchanged. Momentum before = Momentum after p i = p f.
Momentum and Collisions Unit 6. Momentum- (inertia in motion) Momentum describes an object’s motion Momentum equals an object’s mass times its velocity.
Momentum Ms. Li Momentum is a commonly used term in sports. A team that has the momentum is on the move and is going to take some effort to stop. A team.
Momentum Mr. Pacton CMHS Physics Goals For Today 1) Be able to explain two new physics terms: –Momentum –Impulse 2) Answer the following question: “Why.
Momentum Physics Physics Definition : Linear momentum of an object of mass (m) moving with a velocity (v) is defined as the product of the mass.
The force on an object may not be constant, but may vary over time. The force can be averaged over the time of application to find the impulse.
Chapter 7 – Momentum Inertia in motion!!! An object in motion will stay in motion until a force acts to stop it. Momentum = mass x velocity (kg * m/s)
Momentum and Collisions Momentum and Impulse  The momentum of an object is the product of its mass and velocity: p=mv  Units of momentum: kg·m/s.
Momentum A measure of how difficult it is to change an object’s motion (to make it stop or swerve). On what does this difficulty depend? –More mass; more.
Impulse, Momentum and Collisions. momentum = mass x velocity p = mv units: kgm/s or Ns.
Chapter 7 Momentum. Remember: Inertia is the resistance of any moving or nonmoving object to change its state of motion.
Physics 1D03 - Lecture 26 Collisions Conservation of Momentum Elastic and inelastic collisions.
Momentum Momentum is a commonly used term in sports. –A–A team that has the momentum is on the move and is going to take some effort to stop. A team that.
“The quality of Motion”. Momentum A vector quantity defined as the product of an objects mass and velocity.
Would you rather be hit by a tennis ball or a bowling ball?
Chapter-7 Momentum and Impulse 1Momentum 2Impulse 3 Conservation of Momentum 4 Recoil 5 Elastic and Inelastic Collisions 6 Collisions at an Angle: An Automobile.
PHY 101: Lecture The Impulse-Momentum Theorem 7.2 The Principle of Conservation of Linear Momentum 7.3 Collision in One Dimension 7.4 Collisions.
Chapter 6. When objects collide their motion changes and this is the result of a concept called momentum. Momentum = mass x velocity p = mv kgm/s or Ns.
Ch.9 Momentum and Its Conservation. 9.1 Impulse and Momentum Momentum (p): the product of the mass (m) of an object and its velocity (v) p = mv An object.
Take out tables. On a separate sheet: Make a list of every equation we’ve not yet used in this class.
Conservation of Momentum
Impulse and Momentum.
3.1.2 Conservation of Momentum
Name 3 vectors and 3 scalars.
Chapter 9 Objectives: 1) Define momentum.
Linear Momentum Impulse & Collisions.
UNIT 5 – Momentum and Impulse Chapter 8
Chapter-7 Momentum and Impulse Outline
1.
Momentum and impulse.
Presentation transcript:

Take out tables. On a separate sheet: Make a list of every equation we’ve already used in this class that has the velocity term in it.

Here is your choice: a. I toss a bullet at you. b. I shoot a bullet at you from a gun. Which is more dangerous to you? Why?

Linear Momentum & Impulse

Linear Momentum = mass in motion A measure of how hard it is to stop an object. It is like a quantity of motion. How is it different from inertia?

Momentum (p) depends on: mass & velocity of object. p = mv m in kg v in m/s Units are … kg mno name. s

Momentum is a Vector Quantity Same direction as velocity All Energy KE too is a scalar

Ex 1. A 2250 kg pickup truck has v = 25 m/s east. What is the truck’s momentum? p = mv= (2250 kg)(25 m/s) = 5.6 x 10 4 kg m s

Change in momentum - accl occurs any time an object changes velocity (speed or direction).

Momentum Change & Newton’s 2 nd Law F = ma F = m(  v/  t) F  t =m  vm (v f - v i ) for const mass. F  t =  p Impulse.  p = Change in momentum

Equations of Momentum Change J =F  t =  p Impulse = change momentum. p f – p i.  p = mv f – mv i for velocity change with constant mass can factor out mass you can write, m (v f - v i ) or m  v.

Force is required to change velocity or momentum of a body in motion. Force must be in contact for some time.

Increased force & contact time on object give greatest impulse  p = m  v.

Hit a homerun needs large impulse. The more contact time, the less force needed to give same impulse  p.

Impulse (J) is the momentum change. It has the same units. kg mor Ns s It is like force but includes a contact time component!

Ex 2. How long does it take an upward 100N force acting on a 50 kg rocket to increase its speed from 100 to 150 m/s?

F = 100 N  v = 50 m/s m = 50 kg Ft = m  v t = m  v F 50 kg(50 m/s) 100 kg m/s 2 = 25 s.

Concept: A pitcher throws a fastball to a catcher. Who exerts a larger force on the ball? Explain.

Concept: Explain, in terms of impulse and momentum, how airbags help avoid injury in a car crash.

Examples of Impulse/ Change in Momentum Baseball batter swinging through ball. Applying brakes of car over time to stop.

Ex 3. How long does it take a 250 N force to increase to speed of a 100 kg rocket from 10 m/s to 200 m/s?

Ft = m  vt = m  v F F = 250 N m= 100 kg  v =190 m/s t = 100kg(190m/s) 250 kg m/s 2. = 76 s.

Ex 4. The speed of a 1200 kg car increases from 5 to 29 m/s in 12 s. What force accelerated the car?

Ex 5: A 0.4 kg ball is thrown against a wall with a velocity of 15 m/s. If it rebounds with a velocity of 12 m/s: a) what was its  v? b) What was its  p?

 v = v f – v i. -12 m/s – (15 m/s) = - 27 m/s.  p = m  v = 0.4kg(27m/s) =10.8 kg m/s

Running with momentum. 15 min. kQcskhttps:// kQcsk Relaxing with impulse.13 minutes. Thv2mwhttps:// Thv2mw

Understanding Car Crashes 22 min start 8:53 Hewitt Momentum 4:20 UuzUDghttps:// UuzUDg

Hwk read text 208 – 211 do pg 214 #1- 4 concepts do p 211 # Impulse prbs. Also worksheet “Impulse Momentum”

Which are units of Impulse? Nm N/s Ns N/m A ball mass 0.10 kg is dropped from 12-m. Its momentum just as it strikes the ground is: 1.5 kgm/s 1.8 kgm/s 2.4 kgm/s 4.8 kgm/s

A kg tennis ball, initially moving at 12 m/s, is struck by a racquet causing it to move in the opposite direction at a speed of 18 m/s. What is the impulse exerted by the racquet on the ball? 0.36 kgm/s 0.72 kgm/s 1.1 kgm/s 1.8 kgm/s

Graphs

Constant force f - t graph:  p /Impulse is area under curve F  t. Force N

Non-Constant Force Force vs. time graph. The area under the curve = impulse or  p change in momentum. What is the impulse during the 9 seconds of contact? 225 Ns

Consv Momentum Demos.

Conservation of Momentum If no external force acts on a closed system, the total momentum remains unchanged even if objects interact.

What is a system? Two or more objects that interact in motion. One may transfer part or all of its momentum to the other(s). Common examples: collisions, explosions.

One Ball transfers all its momentum.

The astronaut transfers part of his momentum to the second astronaut.

Conservation of Momentum Calc’s Total momentum before = total after interactions. Collisions. Explosions Pushing apart.

 P before =  p after m 1 v 1 + m 2 v 2 = m 1f v 1f + m 2f v 2f v 1 and v 2 velocities for objects one and two. m 1 and m 2 masses of objects To Calculate:

Recoil From Explosions

Recoil illustrates conservation of momentum where initial and final momentum = 0. 0 = p 1 + p 2.

1. The cannon is 100kg and the cannonball is 5 kg. If the ball leaves the cannon with a speed of 100 m/s, find the recoil velocity of the cannon.

Before FiringAfter Firing m 1 v 1 + m 2 v 2 = m 1f v 1f + m 2f v 2f 0 = (100kg)v cf + (5kg)(100m/s) -500 kgm/s = (100 kg) v cf - 5 m/s = v cf recoil velocity of cannon

Extra Example – not on sheet A 63-kg astronaut is in spacewalk when the tether breaks. The astronaut throws a 10-kg oxygen tank directly away from the spaceship at 12 m/s. Assuming the astronaut was initially at rest, what is his final speed after throwing the tank? 1.9 m/s

Hwk. Read text p Do pg 221 #2, and pg 233 #17, 19, 20, 24, 25.

Recoil Hewitt 6:25

Let’s say a 4 kg fish swimming at 5 m/s, eats a 1 kg fish. What is their final velocity? Stick em together problems

Bg fishsm.fish Bg fish sm.fish m 1 v 1 + m 2 v 2 = m 1f v 1f + m 2f v 2f (4kg)(5m/s)+(1 kg)0 =(4kg)v 1 +(1kg)v 2 But the final velocities are equal so factor out the v f : 20 kg m/s = v f (4+1kg) v f = (20 kg m/s) / (5kg) = 4m/s

Fish lunch Hewitt 4:00 MK0B5hEU7OI

Find the final velocity of the cart and brick together 2. A 2 kg brick is dropped on a 3 kg cart moving at 5.0 m/s.

cartbrickcartbrick m 1 v 1 + m 2 v 2 = m 1f v 1f + m 2f v 2f (3kg)(5.0m/s) + 0 = (3kg)v 1 + (2kg)v kg m/s = v (3kg + 2 kg) (150 kg m/s )/5 kg = 3.0 m/s

Elastic & Inelastic Collisions Totally Elastic: no KE lost at all (to heat, light, sound etc.) Usu. Involves objects that don’t make contact or bounce off. Totally Inelastic: involves greatest loss of KE. Usu damage done. Most extreme case – objects stick together.

Which is totally elastic? Inelastic?

Inelastic Collision m c = 1000 kg m t = 3000 kg v c = 20 m/s v t =0 p c = p t =

m 1 v 1 + m 2 v 2 = m 1f v 1f + m 2f v 2f ( 1000kg)(20m/s) + 0 = (1000)v + (3000)v ( kg m/s) = (1000kg kg)v ( kg m/s) = (4000 kg)v ( kg m/s) = v 4000 kg v = 5 m/s

Elastic Collision m c = 1000 kg m t = 3000 kg v c = 20 m/s v t =0 Find final velocity of the car if truck has final velocity of 10 m/s.

m 1 v 1 + m 2 v 2 = m 1f v 1f + m 2f v 2f (1000kg)(20m/s) + 0 = (1000kg)v c +(3000kg)(10m/s) 20,000 kg m/s = (1000kg)v c kg m/s 20,000 kg m/s – 30,000 kg m/s = v c (1000kg) - 10 m/s = v c

Do Now: On July 4 th my family likes to shoot off fireworks. One rocket was shot straight up, climbed to a height 18-m and exploded into hundreds of pieces in all directions at its highest point. Thinking about conservation laws, think about the rocket at its highest point just before & just after it explodes: How does the rocket’s momentum compare before & after the explosion? How does its KE compare compare before & after the explosion?

Inelastic Collisions Stick em together KE “lost” converted Elastic Collisions – no KE lost. Bounce off each other. Pg 233 #17, 19, 20, recoil prbs24, 25. Sentences, equations, show work w/units.

In class pg 221 #1 write out and hand in to be graded. and do pg 219 #1 – 4 calcs

Film Car Crashes or Running with momentum.