Quantum Phase Transitions Subir Sachdev Talks online at

Slides:



Advertisements
Similar presentations
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Advertisements

Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Physical Review B 71, and (2005), cond-mat/
AdS/CFT and condensed matter Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz.
Subir Sachdev Quantum phase transitions of ultracold atoms Transparencies online at Quantum Phase Transitions Cambridge.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
Quantum critical transport, duality, and M-theory hep-th/ Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh.
Insights into quantum matter from new experiments Detecting new many body states will require: Atomic scale resolution of magnetic fields Measuring and.
Putting Competing Orders in their Place near the Mott Transition Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton Burkov (UCSB) Predrag Nikolic (Yale)
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Strongly interacting cold atoms Subir Sachdev Talks online at
Quantum phase transitions cond-mat/ Quantum Phase Transitions Cambridge University Press.
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
The quantum mechanics of two dimensional superfluids Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); cond-mat/ cond-mat/ Leon Balents.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Unexpected Connections in Physics: From Superconductors to Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Stringing together the quantum phases of matter Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Exact ground states of a frustrated 2D magnet: deconfined fractional excitations at a first order quantum phase transition Cristian D. Batista and Stuart.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Phys. Rev. Lett M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Superfluid-insulator transition.
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum critical transport and AdS/CFT HARVARD Lars Fritz, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Mueller,
Subir Sachdev Superfluids and their vortices Talk online:
The Landscape of the Hubbard model HARVARD Talk online: sachdev.physics.harvard.edu Subir Sachdev Highly Frustrated Magnetism 2010 Johns Hopkins University.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
The quantum phase transition between a superfluid and an insulator: applications to trapped ultracold atoms and the cuprate superconductors.
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Science 303, 1490 (2004); cond-mat/ cond-mat/
Electrical and thermal transport near quantum phase transitions in condensed matter, and in dyonic black holes Sean Hartnoll (KITP) Pavel.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
Quantum phase transitions and the Luttinger theorem.
The quantum mechanics of two dimensional superfluids
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Deconfined quantum criticality
Quantum phase transitions out of the heavy Fermi liquid
Presentation transcript:

Quantum Phase Transitions Subir Sachdev Talks online at

What is a “phase transition” ? A change in the collective properties of a macroscopic number of atoms

What is a “quantum phase transition” ? Change in the nature of entanglement in a macroscopic quantum system.

Entanglement Hydrogen atom: Hydrogen molecule: = _ Superposition of two electron states leads to non-local correlations between spins

Outline 1.Spin ordering in “Han purple” 2.Entanglement at the critical point: physical consequences at non-zero temperatures (a) Double-layer antiferromagnet (b) Superfluid-insulator transition (c) Hydrodynamics via mapping to quantum theory of black holes. 3.Entanglement of valence bonds 4.Conclusions Quantum phase transitions

Outline 1.Spin ordering in “Han purple” 2.Entanglement at the critical point: physical consequences at non-zero temperatures (a) Double-layer antiferromagnet (b) Superfluid-insulator transition (c) Hydrodynamics via mapping to quantum theory of black holes. 3.Entanglement of valence bonds 4.Conclusions Quantum phase transitions

Chinese Terracotta warriors ( BC) M. Jaime et al., Phys. Rev. Lett. 93, (2004) Han Purple – BaCuSi 2 O 6

M. Jaime et al., Phys. Rev. Lett. 93, (2004) Each Cu 2+ has a single free electron spin Han Purple – BaCuSi 2 O 6

M. Jaime et al., Phys. Rev. Lett. 93, (2004) Weak magnetic field Han Purple – BaCuSi 2 O 6

M. Jaime et al., Phys. Rev. Lett. 93, (2004) Strong magnetic field Magnetic field, H Han Purple – BaCuSi 2 O 6

QPM XY-AFM SPM M. Jaime et al., Phys. Rev. Lett. 93, (2004) Han Purple – BaCuSi 2 O 6

Outline 1.Spin ordering in “Han purple” 2.Entanglement at the critical point: physical consequences at non-zero temperatures (a) Double-layer antiferromagnet (b) Superfluid-insulator transition (c) Hydrodynamics via mapping to quantum theory of black holes. 3.Entanglement of valence bonds 4.Conclusions Quantum phase transitions

Outline 1.Spin ordering in “Han purple” 2.Entanglement at the critical point: physical consequences at non-zero temperatures (a) Double-layer antiferromagnet (b) Superfluid-insulator transition (c) Hydrodynamics via mapping to quantum theory of black holes. 3.Entanglement of valence bonds 4.Conclusions Quantum phase transitions

Outline 1.Spin ordering in “Han purple” 2.Entanglement at the critical point: physical consequences at non-zero temperatures (a) Double-layer antiferromagnet (b) Superfluid-insulator transition (c) Hydrodynamics via mapping to quantum theory of black holes. 3.Entanglement of valence bonds 4.Conclusions Quantum phase transitions

M. Jaime et al., Phys. Rev. Lett. 93, (2004) Each Cu 2+ has a single free electron spin. Han Purple – BaCuSi 2 O 6 Vary the ratio J/J’

J/J’ Vary the ratio J/J’ Neel Spin gap

J/J’ Vary the ratio J/J’ Temperature, T 0 Neel Spin gap

J/J’ Vary the ratio J/J’ Temperature, T 0 Spin wave

J/J’ Vary the ratio J/J’ Temperature, T 0 Neel Spin gap

J/J’ Vary the ratio J/J’ Temperature, T 0 “Triplet magnon” Neel Spin gap

J/J’ Vary the ratio J/J’ Temperature, T 0 Neel Spin gap

J/J’ Vary the ratio J/J’ Temperature, T 0 S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989) Neel Spin gap

J/J’ Vary the ratio J/J’ Temperature, T 0 Quantum Criticality S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).

J/J’ Vary the ratio J/J’ Temperature, T 0 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). Thermal excitations interact via a universal S matrix. Quantum Criticality Neel Spin gap

J/J’ Vary the ratio J/J’ Temperature, T 0 Decoherence time S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). Neel Spin gap

J/J’ Vary the ratio J/J’ Temperature, T 0 A.V. Chubukov, S. Sachdev and J. Ye, Phys. Rev. B 49, (1994). Quantum critical transport Spin diffusion constant where  is a universal number Neel Spin gap

Outline 1.Spin ordering in “Han purple” 2.Entanglement at the critical point: physical consequences at non-zero temperatures (a) Double-layer antiferromagnet (b) Superfluid-insulator transition (c) Hydrodynamics via mapping to quantum theory of black holes. 3.Entanglement of valence bonds 4.Conclusions Quantum phase transitions

Outline 1.Spin ordering in “Han purple” 2.Entanglement at the critical point: physical consequences at non-zero temperatures (a) Double-layer antiferromagnet (b) Superfluid-insulator transition (c) Hydrodynamics via mapping to quantum theory of black holes. 3.Entanglement of valence bonds 4.Conclusions Quantum phase transitions

Trap for ultracold 87 Rb atoms

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

The Bose-Einstein condensate in a periodic potential Lowest energy state for many atoms Large fluctuations in number of atoms in each potential well – superfluidity (atoms can “flow” without dissipation)

By tuning repulsive interactions between the atoms, states with multiple atoms in a potential well can be suppressed. The lowest energy state is then a Mott insulator – it has negligible number fluctuations, and atoms cannot “flow” Breaking up the Bose-Einstein condensate Lowest energy state for many atoms

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Velocity distribution of 87 Rb atoms Superfliud

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Velocity distribution of 87 Rb atoms Insulator

Superfluid Insulator Non-zero temperature phase diagram Depth of periodic potential

Superfluid Insulator Non-zero temperature phase diagram Depth of periodic potential Dynamics of the classical Gross-Pitaevski equation

Superfluid Insulator Non-zero temperature phase diagram Depth of periodic potential Dilute Boltzmann gas of particle and holes

Superfluid Insulator Non-zero temperature phase diagram Depth of periodic potential No wave or quasiparticle description

D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989) Resistivity of Bi films M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)

Superfluid Insulator Non-zero temperature phase diagram Depth of periodic potential

Superfluid Insulator Non-zero temperature phase diagram Depth of periodic potential Collisionless-to hydrodynamic crossover of a conformal field theory (CFT) K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

Superfluid Insulator Non-zero temperature phase diagram Depth of periodic potential Collisionless-to hydrodynamic crossover of a conformal field theory (CFT) K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997). Needed: Cold atom experiments in this regime

Hydrodynamics of a conformal field theory (CFT) Maldacena’s AdS/CFT correspondence relates the hydrodynamics of CFTs to the quantum gravity theory of the horizon of a black hole in Anti-de Sitter space.

Holographic representation of black hole physics in a 2+1 dimensional CFT at a temperature equal to the Hawking temperature of the black hole. Black hole 3+1 dimensional AdS space Hydrodynamics of a conformal field theory (CFT)

Hydrodynamics of a CFT Waves of gauge fields in a curved background

Hydrodynamics of a conformal field theory (CFT) The scattering cross-section of the thermal excitations is universal and so transport co- efficients are universally determined by k B T Charge diffusion constant Conductivity K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

Hydrodynamics of a conformal field theory (CFT) P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, hep-th/ Spin diffusion constant Spin conductivity For the (unique) CFT with a SU(N) gauge field and 16 supercharges, we know the exact diffusion constant associated with a global SO(8) symmetry:

Outline 1.Spin ordering in “Han purple” 2.Entanglement at the critical point: physical consequences at non-zero temperatures (a) Double-layer antiferromagnet (b) Superfluid-insulator transition (c) Hydrodynamics via mapping to quantum theory of black holes. 3.Entanglement of valence bonds 4.Conclusions Quantum phase transitions

Outline 1.Spin ordering in “Han purple” 2.Entanglement at the critical point: physical consequences at non-zero temperatures (a) Double-layer antiferromagnet (b) Superfluid-insulator transition (c) Hydrodynamics via mapping to quantum theory of black holes. 3.Entanglement of valence bonds 4.Conclusions Quantum phase transitions

Outline 1.Spin ordering in “Han purple” 2.Entanglement at the critical point: physical consequences at non-zero temperatures (a) Double-layer antiferromagnet (b) Superfluid-insulator transition (c) Hydrodynamics via mapping to quantum theory of black holes. 3.Entanglement of valence bonds 4.Conclusions Quantum phase transitions

Outline 1.Spin ordering in “Han purple” 2.Entanglement at the critical point: physical consequences at non-zero temperatures (a) Double-layer antiferromagnet (b) Superfluid-insulator transition (c) Hydrodynamics via mapping to quantum theory of black holes. 3.Entanglement of valence bonds 4.Conclusions Quantum phase transitions

Resonance in benzene leads to a symmetric configuration of valence bonds (F. Kekulé, L. Pauling) Valence bonds in benzene

Resonance in benzene leads to a symmetric configuration of valence bonds (F. Kekulé, L. Pauling) Valence bonds in benzene

Resonance in benzene leads to a symmetric configuration of valence bonds (F. Kekulé, L. Pauling) Valence bonds in benzene

Temperature-doping phase diagram of the cuprate superconductors

Antiferromagnetic (Neel) order in the insulator

Induce formation of valence bonds by e.g. ring-exchange interactions A. W. Sandvik, cond-mat/

= As in H 2 and benzene, each electron wants to pair up with another electron and form a valence bond

=

=

=

=

= Entangled liquid of valence bonds (Resonating valence bonds – RVB) P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974).

= N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). R. Moessner and S. L. Sondhi, Phys. Rev. B 63, (2001). Valence bond solid (VBS)

= N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). R. Moessner and S. L. Sondhi, Phys. Rev. B 63, (2001). Valence bond solid (VBS)

= N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). R. Moessner and S. L. Sondhi, Phys. Rev. B 63, (2001). Valence bond solid (VBS) More possibilities for entanglement with nearby states

= N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). R. Moessner and S. L. Sondhi, Phys. Rev. B 63, (2001). Valence bond solid (VBS) More possibilities for entanglement with nearby states

= N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). R. Moessner and S. L. Sondhi, Phys. Rev. B 63, (2001). Valence bond solid (VBS) More possibilities for entanglement with nearby states

= N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). R. Moessner and S. L. Sondhi, Phys. Rev. B 63, (2001). Valence bond solid (VBS) More possibilities for entanglement with nearby states

= N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). R. Moessner and S. L. Sondhi, Phys. Rev. B 63, (2001). Valence bond solid (VBS) More possibilities for entanglement with nearby states

= N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). R. Moessner and S. L. Sondhi, Phys. Rev. B 63, (2001). Valence bond solid (VBS) More possibilities for entanglement with nearby states

= N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). R. Moessner and S. L. Sondhi, Phys. Rev. B 63, (2001). Valence bond solid (VBS) More possibilities for entanglement with nearby states

= Excitations of the RVB liquid

=

=

=

= Electron fractionalization: Excitations carry spin S=1/2 but no charge

= Excitations of the VBS

=

=

=

= Free spins are unable to move apart: no fractionalization, but confinement

Phase diagram of square lattice antiferromagnet A. W. Sandvik, cond-mat/

Phase diagram of square lattice antiferromagnet VBS order K/J Neel order T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).

Phase diagram of square lattice antiferromagnet VBS order K/J Neel order T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004). RVB physics appears at the quantum critical point which has fractionalized excitations: “deconfined criticality”

Phase diagram of square lattice antiferromagnet VBS order K/J Neel order T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).

Temperature, T 0 Quantum criticality of fractionalized excitations K/J

Phases of nuclear matter

X[Pd(dmit) 2 ] 2 Pd C S One free electron spin on each vertex of a triangular lattice M. Tamura et al., J. Phys. Soc. Jpn. 75, (2006) Observation of a valence bond solid (VBS)

Pressure-temperature phase diagram of ETMe 3 P[Pd(dmit) 2 ] 2 Y. Shimizu et al. cond-mat/ RVB (?) Observation of a valence bond solid (VBS)

Temperature-doping phase diagram of the cuprate superconductors

VBS order K/J Neel order Deconfined quantum critical point (DQCP)

Temperature-doping phase diagram of the cuprate superconductors Hole concentration Neel order + d-wave supercon- ductivity “Supercon- ducting algebraic holon liquid” d-wave supercon- ductivity R.K. Kaul, Y.-B. Kim, S. Sachdev and T. Senthil, to appear DQCP

Temperature-doping phase diagram of the cuprate superconductors Hole concentration Neel order + d-wave supercon- ductivity “Supercon- ducting algebraic holon liquid” d-wave supercon- ductivity R.K. Kaul, Y.-B. Kim, S. Sachdev and T. Senthil, to appear DQCP Quantum critical phases with enhanced VBS correlations

Temperature-doping phase diagram of the cuprate superconductors STM in zero field

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007) “Glassy” Valence Bond Solid (VBS)

Temperature-doping phase diagram of the cuprate superconductors “Glassy” Valence Bond Solid (VBS)

Outline 1.Spin ordering in “Han purple” 2.Entanglement at the critical point: physical consequences at non-zero temperatures (a) Double-layer antiferromagnet (b) Superfluid-insulator transition (c) Hydrodynamics via mapping to quantum theory of black holes. 3.Entanglement of valence bonds 4.Conclusions Quantum phase transitions

Outline 1.Spin ordering in “Han purple” 2.Entanglement at the critical point: physical consequences at non-zero temperatures (a) Double-layer antiferromagnet (b) Superfluid-insulator transition (c) Hydrodynamics via mapping to quantum theory of black holes. 3.Entanglement of valence bonds 4.Conclusions Quantum phase transitions

Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Real-world studies on the entanglement of large numbers of qubits: insights may be important for quantum cryptography and quantum computing. Tabletop “laboratories for the entire universe”: quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics. Conclusions