Collapse IAP RAS1 Influence of peripheral field on structure of nonlinear focus arising at propagation of a wave beam in cubic nonlinear media Vlasov S.N.

Slides:



Advertisements
Similar presentations
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Advertisements

Sub-cycle pulse propagation in a cubic medium Ajit Kumar Department of Physics, Indian Institute of Technology, Delhi, NONLINEAR PHYSICS. THEORY.
Chapter 2 Propagation of Laser Beams
Nonlinear Optics Lab. Hanyang Univ. Chapter 8. Semiclassical Radiation Theory 8.1 Introduction Semiclassical theory of light-matter interaction (Ch. 6-7)
The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.
Gravitational and electromagnetic solitons Monodromy transform approach Solution of the characteristic initial value problem; Colliding gravitational and.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
BIOP – Center for Biomedical Optics and New Laser Systems Light scattering from a single particle Peter E. Andersen Optics and Fluid Dynamics Dept. Risø.
Single-Shot Tomographic Imaging of Evolving, Light Speed Object Zhengyan Li, Rafal Zgadzaj, Xiaoming Wang, Yen-Yu Chang, Michael C. Downer Department of.
1 Multiple filamentation of intense laser beams Gadi Fibich Tel Aviv University Boaz Ilan, University of Colorado at Boulder Audrius Dubietis and Gintaras.
Ariadna study : Space-based femtosecond laser filamentation Vytautas Jukna, Arnaud Couairon, Carles Milián Centre de Physique théorique, CNRS École.
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
Dimitris Papazoglou Assistant Professor, Affiliated faculty IESL-FORTH Senior member of the UNIS group PhD: 1998, Aristotle University of Thessaloniki,
Stationary scattering on non-linear networks (qm-graphs) Sven Gnutzmann (Nottingham), Stas Derevyanko (Aston) and Uzy Smilansky TexPoint fonts used in.
International Conference on Industrial and Applied Mathematics Zurich, Switzerland, July 2007 Shekhar Guha United States Air Force Research Laboratory.
Ultra-High-Intensity Laser-Plasma Interactions: Comparing Experimental Results with Three- Dimensional,Fully-Relativistic, Numerical Simultations Donald.
CS223b, Jana Kosecka Rigid Body Motion and Image Formation.
Driven autoresonant three-oscillator interactions Oded Yaakobi 1,2 Lazar Friedland 2 Zohar Henis 1 1 Soreq Research Center, Yavne, Israel. 2 The Hebrew.
Introductio n The guiding of relativistic laser pulse in performed hollow plasma channels Xin Wang and Wei Yu Shanghai Institute of Optics and Fine Mechanics,
Brookhaven Science Associates U.S. Department of Energy Neutrino Factory / Muon Collider Collaboration Meeting March 17-19, 2008, FNAL, Batavia, IL Target.
Computationally efficient description of relativistic electron beam transport in dense plasma Oleg Polomarov*, Adam Sefkov**, Igor Kaganovich** and Gennady.
1 Pukhov, Meyer-ter-Vehn, PRL 76, 3975 (1996) Laser pulse W/cm 2 plasma box (n e /n c =0.6) B ~ mc  p /e ~ 10 8 Gauss Relativistic electron beam.
Model-free extraction of refractive index from measured optical data
1/9/2007Bilkent University, Physics Department1 Supercontinuum Light Generation in Nano- and Micro-Structured Fibers Mustafa Yorulmaz Bilkent University.
Chapter 12. Interaction of Light and Sound
Arbitrary nonparaxial accelerating beams and applications to femtosecond laser micromachining F. Courvoisier, A. Mathis, L. Froehly, M. Jacquot, R. Giust,
A. Komarov 1,2, F. Amrani 2, A. Dmitriev 3, K. Komarov 1, D. Meshcheriakov 1,3, F. Sanchez 2 1 Institute of Automation and Electrometry, Russian Academy.
Physics 452 Quantum mechanics II Winter 2011 Karine Chesnel.
1 Chapter 2 Wave motion August 25,27 Harmonic waves 2.1 One-dimensional waves Wave: A disturbance of the medium, which propagates through the space, transporting.
Tatiana Talipova in collaboration with Efim Pelinovsky, Oxana Kurkina, Roger Grimshaw, Anna Sergeeva, Kevin Lamb Institute of Applied Physics, Nizhny Novgorod,
ACKNOWLEDGMENTS This research was supported by the National Science Foundation of China (NSFC) under grants , , , the Specialized.
M. Povarnitsyn*, K. Khishchenko, P. Levashov
Focusing of Light in Axially Symmetric Systems within the Wave Optics Approximation Johannes Kofler Institute for Applied Physics Johannes Kepler University.
Interaction of radiation with atoms and ions (I) Absorption- Stimulated emission E1E1 E2E2 W 12 =W 21 Spontaneous emission More definitionsCross section.
Double carbon nanotube antenna as a detector of modulated terahertz radiation V. Semenenko 1, V. Leiman 1, A. Arsenin 1, Yu. Stebunov 1, and V. Ryzhii.
Nonlinear localization of light in disordered optical fiber arrays
Non- paraxiality and femtosecond optics Lubomir M. Kovachev Institute of Electronics, Bulgarian Academy of Sciences Laboratory of Nonlinear and Fiber Optics.
Terahertz generation by the beating of two laser beams in collisional plasmas Ram Kishor Singh and R. P. Sharma Centre for Energy Studies, Indian Institute.
ZAKHAROV-70 Chernogolovka, 3 August Collapsing Femtosecond Laser Bullets Vladimir Mezentsev, Holger Schmitz Mykhaylo Dubov, and Tom Allsop Photonics.
Pulse confinement in optical fibers with random dispersion Misha Chertkov (LANL) Ildar Gabitov (LANL) Jamey Moser (Brown U.)
Nonlinear interaction of intense laser beams with magnetized plasma Rohit Kumar Mishra Department of Physics, University of Lucknow Lucknow
Chapter 9. Electrooptic Modulation of Laser Beams
1 Three views on Landau damping A. Burov AD Talk, July 27, 2010.
Shortening a laser pulse at the focus of a lens Yuelin Li Accelerator Systems Division Argonne National Laboratory
1.Institute For Research in Fundamental Science (IPM), Tehran, Iran 2.CERN, Geneva, Switzerland Mohsen Dayyani Kelisani Thermionic & RF Gun Simulations.
Saffman-Taylor streamer discharges
R. Kupfer, B. Barmashenko and I. Bar
Corrections to the formula for Compton rotation in magnetic field A.I. Sery, Brest State A.S. Pushkin University (Brest, Belarus) XIII Gomel School «Actual.
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
Thermodynamic functions of non- ideal two-dimensional systems with isotropic pair interaction potentials Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS,
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
Complex geometrical optics of Kerr type nonlinear media Paweł Berczyński and Yury A. Kravtsov 1) Institute of Physics, West Pomeranian University of Technology,
Multiple-Cone Formation during the Femtosecond-Laser Pulse Propagation in Silica Kenichi Ishikawa *, Hiroshi Kumagai, and Katsumi Midorikawa Laser Technology.
A Domain Decomposition Method for Pseudo-Spectral Electromagnetic Simulations of Plasmas Jean-Luc Vay, Lawrence Berkeley Nat. Lab. Irving Haber & Brendan.
1 Continuations of NLS solutions beyond the singularity Gadi Fibich Tel Aviv University ff Moran Klein - Tel Aviv University B. Shim, S.E. Schrauth, A.L.
Nonlinear optical effect in the soft x-ray region by two-photon ionization of He + Nonlinear optical effect in the soft x-ray region by two-photon ionization.
Operated by Los Alamos National Security, LLC for NNSA Dynamics of modulated beams Operated by Los Alamos National Security, LLC, for the U.S. Department.
EE 372: Engineering Electromagnetics II Spring 2016.
ULTRAFAST PHENOMENA – LINEAR AND NONLINEAR To present nonlinear optics as successive approximations of the semi-classical interaction between light and.
Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉 義 生 老師 南台科技大學 電機所.
Tunneling Ionization of Hydrogen atom in an Electric Field Hillary Ssemanda 森下研.
Chapter 2 Wave motion August 22,24 Harmonic waves
Specific features of motion of the photon density normalized maximum
QUANTUM TRANSITIONS WITHIN THE FUNCTIONAL INTEGRATION REAL FUNCTIONAL
Outline We examine the existence of parabolic resonances and various regimes of instabilities in the perturbed Nonlinear Shrödinger equation (NLS). Model:
Initial analysis and comparison of the wave equation and asymptotic prediction of a receiver experiment at depth for one-way propagating waves Chao Ma*,
SPACE TIME Fourier transform in time Fourier transform in space.
Electric field amplitude time A Bandwidth limited pulse
Propagating Monochromatic Gaussian Beam Wave with
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Presentation transcript:

Collapse IAP RAS1 Influence of peripheral field on structure of nonlinear focus arising at propagation of a wave beam in cubic nonlinear media Vlasov S.N. IAP RAS Russia, N-Novgorod, Uljanov street,46,

Collapse IAP RAS2 Contents 1.Jntroduction. Motivation. 2.Construction of solution. The first order approximation. 3.The second order approximation. Influence of periphery of beam. 4.Numerical modelling of influence of "wings" on field in nonlinear focus.

Collapse IAP RAS3 1. Intoduction The initial equation - transverse Laplacian, Self-focusing part of beam “Wings" of beam or nonself-focusing to a part of a beam Amplitude structure of a beam at self-focusing - Point of a collapse

Collapse IAP RAS4 Ray structure of self-focusing an axially symmetric beam

Collapse IAP RAS5 Self-simular solution of V.I. Talanov (1966) 1. Ray structure of self-focusing an axially symmetric beam self-simular solution of first type

Collapse IAP RAS6 Ray structure of self-focusing an axially symmetric beam self-simular solution of second type 2.

Collapse IAP RAS7 Cross-section structures of a beam, showing the dependences of growth rate of a field at nonlinear focus from cross-section structures

Collapse IAP RAS8 2. Construction of solution. The first order approximation[L,P,S,S;K,Sh,Z] (4) or

Collapse IAP RAS9

10 Comparison of amplitudes of homogeneous beams Comparison of phases of homogeneous beams

Collapse IAP RAS11 Dependences of power of homogeneous beams from cross-section coordinate The real part of potential

Collapse IAP RAS12 и Dependence on value

Collapse IAP RAS13 The explanatory to a way of a choice of a principle of growth rate of a field on an axis Self-focusing part of beam “Wings" of beam or nonself- focusing to a part of a beam The first way The second way

Collapse IAP RAS14 First way

Collapse IAP RAS15 Second way

Collapse IAP RAS16 3. The second order approximation.

Collapse IAP RAS17 Dependence of amplitude on cross-section coordinate at и and phase

Collapse IAP RAS18 Dependence of amplitude on cross-section coordinate at various parameters and

Collapse IAP RAS19

Collspse IAP RAS20 4. Results of numerical calculations. Dependence of the amplitude of a field on axes, the equation

Collapse IAP RAS21. Dependence of the amplitude of a field on axes, the equation

Collapse IAP RAS22 Dependence of the maximal field on size of an initial field for a various degree of focusing

Collapse IAP RAS23 Dependence of a field in the center of a cavity from time

Collapse IAP RAS24 Dependence of a field on an axis in system with the combined nonlinearity

Литература 1.Таланов В.И. "О самофокусировке волновых пучков в нелинейных средах", Письма ЖЭТФ, 1965, т.2, n.5, с Власов С.Н., Петрищев В.А, Таланов В.И. "Усредненное описание волновых пучков в линейных и нелинейных средах", Изв.ВУЗ'ов, Радиофизика, 1971, т.14, n.9, с Захаров В.Е., Сынах В.С., О характере особенности при самофокусировке, ЖЭТФ, 1975, т.68, в.3, с Collapse IAP RAS

4. Луговой В.Н., Прохоров А.М., Теория распространения мощного лазерного излучения в нелинейной среде, УФН, 1973, т.111, в.2, с Власов С.Н., Таланов В.И., Самофокусировка волн, ИПФ РАН, Нижний Новгород, 1997, с Власов С.Н., Пискунова Л.В., Таланов В.И., Структура поля вблизи особенности, возникающей при самофокусировке в кубичной среде, ЖЭТФ, 1978, т.75, в.5, с Wood D., The self-focusing singularity in nonlinear Schrodinger equation. Studies in applied mathematics, 1984, v.84, n.2, p.102 Collapse IAP RAS

8. McLaughlin D.W., Papanicolaou G.C., Sulem C., Sulem P.L., Focusing singularity of the cubic Schrodinger equation, Phys. Rev. A, 1986, V.34, n.2, p LeMesurier B.L., Papanicolaou G.C., Sulem C., Sulem P.L., Local structure of the self-focusing singularity of the cubic Schrodinger equation, Physica D, 1988, v.32, p Kosmatov N.E., Shvets V.F., Zakharov V.E., Computer simulation of wave collapses in the nonlinear Schrodinger equation, Physica D, 1991, v.52, p Fraiman G.M., Smirnov A.I., The interaction representation in the self-focusing theory, Physica D, 1991, v.52, p Berge L., Physics reports, Wave collapse in physics: principles and applications to light and plasma physics, 1998, v.303, n.5-6, p Collapse IAP RAS

13. Ю.Н.Овчинников, И.М.Сигал, Многопараметрическое семейство коллапсирующих решений критического нелинейного уравнения Шредингера в размерности D=2, ЖЭТФ, 2003г., т.124, в.1(7), с Fraiman G.M., Litvak A.G., Talanov V.I., Vlasov S.N., Optical self-focusing: stationary beams and femtosecond pulses, in book Self-focusing in the past and present, Schwinger 15. Таланов В.И., Автомодельные волновые пучки в нелинейном диэлектрике, Изв. ВУЗ Радиофизика, 1966, т.9, в.2, с Ю.Н.Овчинников, И.М.Сигал, Коллапс в нелинейном уравнении Шредингера критической размерности {}, Письма в ЖЭТФ, 2002г., т.75, в.7 с В.Н.Гольдберг, В.И.Таланов, Р.Э. Эрм, Самофокусировка аксиально симметричных волновых пучков, ВУЗ'ов, Радиофизика, 1967, т.10, n.5, с. 574 Collapse IAP RAS

18. В.И.Таланов, "О фокусировке света в кубичных средах", Письма ЖЭТФ, 1970, т.11, n.6, с С.Н.Гурбатов, С.Н.Власов, К теории самодействия интенсивных световых пучков в плавно неоднородных средах, Изв.ВУЗ'ов, Радиофизика, 1976, т.19, n.8, с Бондаренко Н.Г., Еремина И.В., Таланов В.И., Уширение спектра при самофокусировке света в стеклах, Письма в ЖЭТФ, 12, в.3, 125(1970), поправка, Письма в ЖЭТФ, 12, 386 (1970) 21. Бондаренко Н.Г., Еремина И.В., Макаров А.И., Использование явления СФ для исследования пробоя при сверхкоротком взаимодействии света с веществом, в сб. Квантовая электроника, Наукова Думка, Киев, 33, с.89(1987) 22. Tzortzakis S., Sudrie L., Franko M., Prade B et al., Self-guided propagation of ultrashort IR laser pulses in fused silica, Phys. Rev. Letts., 87, n.21, (2001) Collapse IAP RAS

23. С.Н.Власов, Л.В.Пискунова, В.И.Таланов, Трехмерный волновой коллапс в модели нелинейного уравнения Шредингера, ЖЭТФ, 1989, т.95, n.6, с.1945 Collapse IAP RAS