Capacitors. A capacitor is a device for storing electric charge. It can be any device which can store charges. Basically, capacitors consists of two metal.

Slides:



Advertisements
Similar presentations
before the plates were pulled apart.
Advertisements

Chapter 25. Capacitance What is Physics? Capacitance
AL Capacitor P.34. A capacitor is an electrical device for storing electric charge and energy. - consists of two parallel metal plates with an insulator.
Chapter 24 Capacitance, dielectrics and electric energy storage
Chapter 25 Capacitance Key contents Capacitors Calculating capacitance
Dielectric Materials.
Chapter 26A - Capacitance
CAPACITORS SLIDES BY: ZIL E HUMA. OBJECTIVES CHARGING OF THE CAPACITORS DISCHARGING OF THE CAPACITORS DIELECTRIC MATERIALS FACTORS EFFECTING THE VALUES.
Capacitors1 THE NATURE OF CAPACITANCE All passive components have three electrical properties Resistance, capacitance and inductance Capacitance is a measure.
Chapter 23 Capacitance.
Chapter 25 Capacitance.
Charges Force (field) Potential (energy) What for? positive (+)
Lecture 8 Capacitance and capacitors
Application – Xerographic Copiers
Capacitance and Dielectrics
Bright Storm on Capacitors (Start to minute 7:10).
UNIT 9 Electrostatics and Currents 1. Tuesday March 20 th 2 Electrostatics and Currents.
Capacitance and Dielectrics
1 Capacitance and Dielectrics Chapter 27 Physics chapter 27.
When a potential difference of 150 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 30.0 nC/cm2.
Capacitors A capacitor is a device for storing charge and electrical potential energy.
Capacitance and Dielectrics
Capacitors and Inductors. Introduction Resistor: a passive element which dissipates energy only Two important passive linear circuit elements: 1)Capacitor.
ENGR. VIKRAM KUMAR B.E (ELECTRONICS) M.E (ELECTRONICS SYSTEM ENGG:) MUET JAMSHORO 1 CAPACITOR.
Conductors are commonly used as places to store charge You can’t just “create” some positive charge somewhere, you have to have corresponding negative.
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 13.1 Capacitance and Electric Fields  Introduction  Capacitors and Capacitance.
FCI1 CHAPTER OUTLINE 1. Definition of Capacitance 2. Calculating Capacitance 3. Combinations of Capacitors 4. Energy Stored in a Charged Capacitor.
18.2 Energy stored in a capacitor 18.1 Capacitors and Capacitance Define Function Capacitors in series and parallel.
JIT HW 25-9 Conductors are commonly used as places to store charge You can’t just “create” some positive charge somewhere, you have to have corresponding.
Lecture 10 Capacitance and capacitors
Capacitance and Dielectrics
Capacitors. A capacitor is a device which is used to store electrical charge ( a surprisingly useful thing to do in circuits!). Effectively, any capacitor.
1 CAPACITORS 2 BASIC CONSTRUCTION INSULATOR CONDUCTOR + - TWO OPPOSITELY CHARGED CONDUCTORS SEPARATED BY AN INSULATOR - WHICH MAY BE AIR The Parallel.
Electric Circuits Fundamentals
Electric Potential. Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative – potential energy can be defined.
Capacitance and Dielectrics
Monday, Sept. 26, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #8 Monday, Sept. 26, 2005 Dr. Jaehoon Yu Capacitors Determination.
Chapter 10 Capacitors and Capacitance. 2 Capacitance Capacitor –Stores charge –Two conductive plates separated by insulator –Insulating material called.
Electric Energy and Capacitance
Charges positive (+) negative (-) conservation Force (field) Potential (energy) Force between point charges Force on charge in the field Connect field.
Chapter 12 Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd © 2010 Pearson Higher Education, Upper Saddle River, NJ All Rights.
Capacitanc e and Dielectrics AP Physics C Montwood High School R. Casao.
GENERAL PHYSICS LECTURE Chapter 26 CAPACITANCE AND DIELECTRICS Nguyễn Thị Ngọc Nữ PhD: Nguyễn Thị Ngọc Nữ.
111/16/2015 ELECTRICITY AND MAGNETISM Phy 220 Chapter 4: Capacitors.
CHAPTER 17 CAPACITOR & DIELECTRICS (PST :3 hours) (PDT : 7 hours)
CAPACITORS NCEA Level 3 Physics CAPACITORS Electric field strength Capacitors Capacitance & Charge Energy in capacitors Capacitors in series and.
Chapter 16 Electrical Energy AndCapacitance. General Physics Review - Electric Potential for a system of point charges.
Capacitance Physics Montwood High School R. Casao.
Chapter 25 Lecture 20: Capacitor and Capacitance.
Capacitor Engr. Faheemullah Shaikh Lecturer, Department of Electrical Engineering.
Capacitors The capacitor is an element that continuously stores charge (energy), for later use over a period of time! In its simplest form, a capacitor.
Capacitance Chapter 25. Capacitance A capacitor consists of two isolated conductors (the plates) with charges +q and -q. Its capacitance C is defined.
Capacitance. Device that stores electric charge. Construction: A capacitor is two conducting plates separated by a finite distance Typically separated.
Capacitor Charging and Discharging 18-Jan-08 Mr.NGAN HON SHING.
Chapter 26: Capacitance and Dielectrics
Chapter 26A - Capacitance
Chapter 24 Capacitance Capacitor is a device that stores electrostatic potential energy. A capacitor consists of 2 spatially separated conductors which.
Capacitance and Dielectrics
Capacitors and Dielectrics
Capacitors A capacitor is a device for storing charge and electrical potential energy. All capacitors consists of two metal plates separated by an insulator.
Chapter 26: Capacitance and Dielectrics
11/7/2018.
Chapter 19 Capacitance.
Objectives: After completing this module, you should be able to:
Capacitors and Dielectrics
Chapter 26: Capacitance and Dielectrics
Capacitor Is a device that stores energy by maintaining a separation between positive and negative charge. Compare stored energy / charge to a bucket.
Capacitance and Dielectrics Test: Wednesday 2/27
Presentation transcript:

Capacitors

A capacitor is a device for storing electric charge. It can be any device which can store charges. Basically, capacitors consists of two metal plates separated by an insulator. The insulator is called dielectric. (e.g. polystyrene, oil or air) Circuit symbol: + _ Dielectric

Examples of Capacitors Paper, plastic, ceramic and mica capacitors Electrolytic capacitors Air capacitors

Charging a capacitor R R t Q Computer simulation 1

Charging a capacitor R R t I I decreases exponentially with t.

Charging and discharging capacitors Video Computer simulation 2

Charging a Capacitor (2) Voltage-charge characteristics Current flow I t V c or Q t Vc ∝ Q

Charging of capacitors When a capacitor is connected across a battery, electrons flow from the negative terminal of the battery to a plate of the capacitor connected to it. At the same rate, electrons flow from the other plate of the capacitor to the positive terminal of the battery. This gives a flow of current as the capacitor is being charged. As charges accumulate on the plates of the capacitor, electric potential built across the plates. This hinders further accumulation of charges and makes the charge up current decreasing. When the potential difference across the plates equals that of the battery, the current becomes zero.

Discharging of Capacitors (1) R R t Q Computer simulation 1

Discharging of Capacitors (1) R R t I

Discharging a Capacitor (2) Voltage-charge characteristics Current flow V C or Q t I t

Capacitance (1) Consider any isolated pair of conductors with charge Q Capacitance is defined as where Q = charge on one conductor V = potential difference between two conductors Unit : farad (F )

Capacitance of a Capacitor Note that Q is not the net charge on the capacitor, which is zero. Capacitance is a measure of a capacitor's ability to store charge. The more charge a capacitor can hold at a given potential difference, the larger is the capacitance. Capacitance is also a measure of the energy storage capability of a capacitor. Unit of capacitance: CV -1 or farad (F). Farad is a very large unit. Common units are 1  F = F, 1nF = F and 1pF = F

Markings of capacitor Consider a ‘6.3V 1500  F’ capacitor shown in the following figure. Note that: (1)Maximum voltage across the capacitor should not exceed 6.3 V, otherwise (leakage or) breakdown may occur. (2)Capacitance of 1500  F means the capacitor holds 1500  C of charge for every 1 V of voltage across it.

Example 1 Find the maximum charge stored by the capacitor shown in the figure above. Solution:

Capacitance of an isolated conducting sphere Capacitance = Q/V For an isolated conducting sphere, ∴ C = Q/V = 4  a Q

Example 2 Find the capacitance of the earth given that the radius of the earth is 6 x 10 6 m. Solution

Note: The earth’s capacitance is large compared with that of other conductors used in electrostatics. Consequently, when a charged conductor is ‘earthed’, it loses most of its charge to the earth or discharged.

Parallel Plate Capacitor Suppose two parallel plates of a capacitor each have a charge numerically equal to Q. As C = Q/V where Q =  EA and V = Ed  C =  A/d C depends on the geometry of the conductors. +Q+Q –Q–Q d area A Electric field strength

Geometrical properties of capacitor Parallel plate capacitor capacitance depends on area and plate separation. For large C, we need area A large and separation d small.

Example 3 The plates of parallel-plate capacitor in vacuum are 5 mm apart and 2 m 2 in area. A potential difference of 10 kV is applied across the capacitor. Find (a)the capacitance Solution

Example 3 The plates of parallel-plate capacitor in vacuum are 5 mm apart and 2 m 2 in area. A potential difference of 10 kV is applied across the capacitor. Find (b) the charge on each plate, and Solution

Example 3 The plates of parallel-plate capacitor in vacuum are 5 mm apart and 2 m 2 in area. A potential difference of 10 kV is applied across the capacitor. Find (c) the magnitude of the electric field between the plates. Solution

Application – variable capacitors A variable capacitor is a capacitor whose capacitance may be intentionally and repeatedly changed mechanically or electronically Variable capacitors are often used in circuits to tune a radio (therefore they are sometimes called tuning capacitors) In mechanically controlled variable capacitors, the amount of plate surface area which overlaps can be changed as shown in the figure below. simulation

Permittivity of dielectric between the plates A dielectric is an insulator under the influence of an E field. The following table shows some dielectrics and their corresponding relative permittivity. Capacitance can be increased by replacing the dielectric with one of higher permittivity. DielectricRelative permittivity Vacuum1 Air Polythene2.3 Waxed paper2.7 Mica5.4 Glycerin43 Pure water80 Strontium titanate 310

Action of Dielectric (1) A molecule can be regarded as a collection of atomic nuclei, positively charged, and surrounded by a cloud of negative electrons no field no net charge Field net -ve charge net +ve charge When the molecule is in an electric field, the nuclei are urged in the direction of the field, and the electrons in the opposite direction. The molecule is said to be polarized.

Action of Dielectric (2) When a dielectric is in a charged capacitor, charges appear as shown below. These charges are of opposite sign to the charges on the plates. The charges reduce the electric field strength E between the plates. The potential difference between the plates is also reduced as E = V/d. From C = Q/V, it follows that C is increased.

Capacitors in series and parallel Computer simulation 1 Computer simulation 2

Formation of a Capacitor Capacitors are formed all of the time in everyday situations: –when a charged thunderstorm cloud induces an opposite charge in the ground below, –when you put your hand near the monitor screen of this computer.

Charged Capacitor A capacitor is said to be charged when there are more electrons on one conductor plate than on the other. When a capacitor is charged, energy is stored in the dielectric material in the form of an electrostatic field.

Functions of Dielectrics It solves the mechanical problem of maintaining two large metal plates at a very small separation without actual contact. Using a dielectric increases the maximum possible potential difference between the capacitor plates. With the dielectric present, the p.d. for a given charge Q is reduced by a factor ε r and hence the capacitance of the capacitor is increased.

Relative permittivity and Dielectric Strength The ratio of the capacitance with and without the dielectric between the plates is called the relative permittivity. or dielectric constant. The strength of a dielectric is the potential gradient (electric field strength) at which its insulation breakdown.

Relative permittivity of some dielectrics DielectricRelative permittivity Vacuum1 Air Polythene2.3 Waxed paper2.7 Mica5.4 Glycerin43 Pure water80 Strontium titanate310

Capacitance of Metal Plates Consider a metal plate A which has a charge +Q as shown. If the plate is isolated, A will then have some potential V relative to earth and its capacitance C = Q/V. A +Q +V Now suppose that another metal B is brought near to A. B -q +q So C’ = Q/V’ > C. Induced charges –q and +q are then obtained on B. This lowers the potential V to a value V’.

Combination of Capacitor (1) In series The resultant capacitance is smaller than the smallest Individual one.

Combination of Capacitors (2) In parallel The resultant capacitance is greater Than the greatest individual one.

Measurement of Capacitance using Reed Switch The capacitor is charged at a frequency f to the p.d V across the supply, and each time discharged through the microammeter. AA V +-+- V During each time interval 1/f, a charge Q = CV is passed through the ammeter.

Stray Capacitance The increased capacitance due to nearby objects is called the stray capacitance C s which is defined by C = C o + C s –Where C is the measured capacitance. Stray capacitance exists in all circuits to some extent. While usually to ground, it can occur between any two points with different potentials. Sometimes stray capacitance can be used to advantage, usually you take it into account but often it's a monumental pain.

Measurement of Stray Capacitance In measuring capacitance of a capacitor, the stray capacitance can be found as follows: CsCs 1/d C 0

Time Constant (  )  = CR The time constant is used to measure how long it takes to charge a capacitor through a resistor. The time constant may also be defined as the time taken for the charge to decay to 1/e times its initial value. The greater the value of CR, the more slowly the charge is stored. Half-life –The half-life is the time taken for the charge in a capacitor to decay to half of its initial value. –T 1/2 = CR ln 2

Energy Stored in a Charged Capacitor The area under the graph gives the energy stored in the capacitor. 0 Q V

Applications of Capacitors (1) Press the key on a computer keyboard reduce the capacitor spacing thus increasing the capacitance which can be detected electronically. The capacitance is varied by altering the overlap between a fixed set of metal plates and a moving set. These are used to tune radio receiver.

Applications of Capacitors (2) Condenser microphone –sound pressure changes the spacing between a thin metallic membrane and the stationary back plate. The plates are charged to a total charge –A change in plate spacing will cause a change in charge Q and force a current through resistance R. This current "images" the sound pressure, making this a "pressure" microphone.

Applications of Capacitors (3) Electronic flash on a camera –The battery charges up the flash’s capacitor over several seconds, and then the capacitor dumps the full charge into the flash tube almost instantly. –A high voltage pulse is generated across the flash tube. – The capacitor discharges through gas in the the flash tube and bright light is emitted.