Two emerging keywords in ceramic community are sustainability and tailored functionality for advanced applications. This high-efficient-oriented and eco-friendly approach are to respond properly to the environmental regulations getting tougher and tougher. One of the biggest challenges on this quest lies in the fact that most useful ceramic materials contain nominally toxic elements that should be eventually removed. Our goal is to best-tailor the functionality of ceramic materials to meet the requirements for practical applications in accordance with the environmental appropriateness. Research Keywords Lead-free piezoceramics, dielectric materials, electrocaloric materials Research interests High power piezoelectric applications, Large stroke actuator materials, high-efficiency solid- state cooling devices, in situ characterization of functional properties. On going research Topics (selected) 1. Lead-free piezoceramics for actuator applications Research Publications (selected) 1.E. Sapper, A. Gassmann, L. Gjødvad, W. Jo, T. Granzow, and J. Rödel, “Cycling Stability of Lead-Free BNT-8BT and BNT-6BT-3KNN Multilayer Actuators and Bulk Ceramics,” J. Eur. Ceram. Soc. 34 [3] (2014) C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H.-J. Kleebe, S.-J. Jeong, J.-S. Lee, J. Rödel, “Relaxor/Ferroelectric Composites: A Solution in the Quest for Practically Viable Lead-Free Incipient Piezoceramics,” Adv. Funct. Mater., 24 [3] (2013) K. Wang, F. Yao, W. Jo, D. Gobeljic, V. V. Shvartsman, D. C. Lupascu, J.-F. Li, and J. Rödel, “Temperature-Insensitive (K, Na)NbO 3 -Based Lead-Free Piezo Actuator Ceramics,” Adv. Funct. Mater. 23 [33] (2013) R. Dittmer, W. Jo, J. Rödel, S. V. Kalinin, and N. Balke, “Nanoscale insight into lead-free BNT-BT-xKNN,” Adv. Funct. Mater. 22 [20] (2012) W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rödel, “Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective,” J. Electroceram. 29 [1] (2012) W. Jo and J. Rödel, “Electric-Field-Induced Volume Change and Room Temperature Phase Stability of (Bi 1/2 Na 1/2 )TiO 3 -x mol% BaTiO 3 Piezoceramics,” Appl. Phys. Lett. 99 [4] (2011) , 3pp. 7.W. Jo, D.-Y. Kim, and N.-M. Hwang, "Effect of Interface Structure on the Microstructural Evolution of Ceramics," J. Am. Ceram. Soc. 89 [8] (2006) Patents (selected) 1. Dielectric Ceramic Materials and Its Usage as Dielectric Components, German Patent, , 04 JUL Method of Fabricating Polycrystalline Ceramic for Thermoelectric Devices, U.S. patent: US 13/064,222, 3 NOV Ceramic Material, Method for the Production of the Ceramic Material and Component Comprising the Ceramic Material, EU Patent, PCT/EP2009/055310, 30 APR 조욱 교수 Wook Jo School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST) Office : Engineering BLDG 1. Rm Lab : Engineering BLDG 1. Rm. 405 Tel: Fax: Curriculum Vitae 2014~Present: Associate Professor (UNIST) 2014~Present: International Director at Korean Institute of Electrical and Electronic Material Engineers 2013~Present: Associate Editor at Journal of the American Ceramic Society 2012~Present: Editor at Scientific Reports 2012~Present: Editor at Journal of Electroceramics 2007~2013 : Technische Universität Darmstadt, Assistant Professor at Institute of Materials Science 2005~2006 : Seoul National University, Research Associate at the School of Materials Science & Engineering Academic Credential 2005: Ph. D. Materials Science & Engineering, Seoul National University 2003: M. S Materials Science & Engineering, Seoul National University 2001: B. S. Ceramic Engineering, Yonsei University Awards/Honors/Memberships 1 st & 2 nd most cited articles in 2012 at Journal of Applied Physics Most active referees at Physica Status Solidi in 2010 & : Research highlight at Applied Physics Letters 2006-Present: Registered at Marquis Who’s Who in Science & Engineering 2004: Best research awards, Seoul National University 2003: 1 st place award at Ceramograph contest, American Ceramic Society Research Groups Emerging Functional Materials Research Group Sustainable Functional Ceramics Lab. 신소재공학부 /School of Materials Science and Engineering