Status of TI Materials. Not continuously deformable Topological Invariant Topology & Topological Invariant Number of Holes Manifold of wave functions.

Slides:



Advertisements
Similar presentations
Quasiparticle Scattering in 2-D Helical Liquid arXiv: X. Zhou, C. Fang, W.-F. Tsai, J. P. Hu.
Advertisements

Tunneling Conductance and Surface States Transition in Superconducting Topological Insulators Yukio Tanaka (Nagoya University)
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Aretouli E. Kleopatra 20/2/15 NCSR DEMOKRITOS, Athens, Greece
Searching for Majorana fermions in semiconducting nano-wires Pedram Roushan Peter O’Malley John Martinis Department of Physics, UC Santa Barbara Borzoyeh.
Ultrahigh-resolution spin-resolved ARPES of novel low-dimensional systems Seigo Souma Tohoku University May 31, 2010 A. Takayama, K. Sugawara, T. Sato,
Half-Heusler Compounds for Topological Insulators Joshua Sayre Materials 286G May 26, 2010.
Topological Superconductors
Bulk Topological Superconductor. Z Possible Topological Superconductors Time-Reversal Invariant (TRI) Time-Reversal Broken (TRB) 1D 2D 3D Z2Z2 Z2Z2 Z2Z2.
Interacting topological insulators out of equilibrium Dimitrie Culcer D. Culcer, PRB 84, (2011) D. Culcer, Physica E 44, 860 (2012) – review on.
Junctions of Dirac Materials K. Sengupta Indian Association for the Cultivation of Sciences, Kolkata.
Quantum anomalous Hall effect (QAHE) and the quantum spin Hall effect (QSHE) Shoucheng Zhang, Stanford University Les Houches, June 2006.
Quantum Spin Hall Effect - A New State of Matter ? - Naoto Nagaosa Dept. Applied Phys. Univ. Tokyo Collaborators: M. Onoda (AIST), Y. Avishai (Ben-Grion)
Effective Topological Field Theories in Condensed Matter Physics
Robustness of Majorana induced Fractional Josephson Effect
Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.
Topology of Andreev bound state
Majorana Fermions and Topological Insulators
Research fueled by: MRS Spring Meeting San Francisco April 28th 2011 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Topological thermoelectrics.
Topological Insulators and Beyond
Organizing Principles for Understanding Matter
Dissipationless quantum spin current at room temperature Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University.
Topological insulators and superconductors
National University of Singapore
Electronic Structure of A IV B VI · m A 2 V B 3 VI (A IV = Ge,Sn,Pb; A V = Bi,Sb; B VI = Te,Se; m=1-3) Topological Insulators S.V. Eremeev, T.V. Menshchikova,
Topology and solid state physics
Topological insulators and superconductors
Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3.
@Nagoya U. Sept. 5, 2009 Naoto Nagaosa Department of Applied Physics
1 Topological Quantum Phenomena and Gauge Theories Kyoto University, YITP, Masatoshi SATO.
Dirac fermions in Graphite and Graphene Igor Lukyanchuk Amiens University I. Lukyanchuk, Y. Kopelevich et al. - Phys. Rev. Lett. 93, (2004) - Phys.
Thermoelectric properties of ultra-thin Bi 2 Te 3 films Jesse Maassen and Mark Lundstrom Network for Computational Nanotechnology, Electrical and Computer.
Modeling thermoelectric properties of TI materials: a Landauer approach Jesse Maassen and Mark Lundstrom Network for Computational Nanotechnology, Electrical.
Effects of Interaction and Disorder in Quantum Hall region of Dirac Fermions in 2D Graphene Donna Sheng (CSUN) In collaboration with: Hao Wang (CSUN),
Topological Insulators and Topological Band Theory
Quantum Confinement in Nanostructures Confined in: 1 Direction: Quantum well (thin film) Two-dimensional electrons 2 Directions: Quantum wire One-dimensional.
Collective modes and interacting Majorana fermions in
Tami Pereg-Barnea McGill University CAP Congress, June 16, 2014.
Electrons on the brink: Fractal patterns may be key to semiconductor magnetism Ali Yazdani, Princeton University, DMR Princeton-led team of scientists.
Quantum Interference in Multiwall Carbon Nanotubes Christoph Strunk Universität Regensburg Coworkers and Acknowledgements: B. Stojetz, Ch. Hagen, Ch. Hendlmeier.
The Puzzling Boundaries of Topological Quantum Matter Michael Levin Collaborators: Chien-Hung Lin (University of Chicago) Chenjie Wang (University of Chicago)
Electrons in Solids Simplest Model: Free Electron Gas Quantum Numbers E,k Fermi “Surfaces” Beyond Free Electrons: Bloch’s Wave Function E(k) Band Dispersion.
Delay times in chiral ensembles— signatures of chaotic scattering from Majorana zero modes Henning Schomerus Lancaster University Bielefeld, 12 December.
Basics of edge channels in IQHE doing physics with integer edge channels studies of transport in FQHE regime deviations from the ‘accepted’ picture Moty.
Quantum Hall transition in graphene with correlated bond disorder T. Kawarabayshi (Toho University) Y. Hatsugai (University of Tsukuba) H. Aoki (University.
Axion electrodynamics on the surface of topological insulators
Dirac’s inspiration in the search for topological insulators
Topological Insulators
Realization of Axion Electrodynamics on Topological Insulators Jisoon IhmJisoon Ihm Department of Physics POSTECH June 1, 2016.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Topological Insulators
Fatemeh (Samira) Soltani University of Victoria June 11 th
Igor Lukyanchuk Amiens University
Search for New Topological Insulator Materials April 14, 2011 at NTNU Hsin Lin Northeastern University.
Topological phases driven by skyrmions crystals
‘Tc’ ~ 70 K: Fe-Based SC 200 Tc (K) year
Lei Hao (郝雷) and Ting-Kuo Lee (李定国)
From fractionalized topological insulators to fractionalized Majoranas
Introduction to topological insulators and STM/S on TIs
Electronic structure of topological insulators and superconductors
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Topological Insulators
Lecture 3: Topological insulators
Josephson supercurrent through a topological insulator surface state
Adjustable magnetization in codoped topological insulator Bi2Se3
Correlations of Electrons in Magnetic Fields
Taras Patlatiuk Zumbühl Group.
Optical signature of topological insulator
Weiyi Wang, Yanwen Liu, Cheng Zhang, Ping Ai, Faxian Xiu
Presentation transcript:

Status of TI Materials

Not continuously deformable Topological Invariant Topology & Topological Invariant Number of Holes Manifold of wave functions in the Hilbert space  xy  xx Quantum Hall system: D. Hilbert K. von Klitzing “Nontrivial” topology Bulk acquires a Landau-Level gap H

Topological Insulators Chern number: n Re u n 0 Im u n un(k)un(k) kxkx  kyky 0  Brillouin zone Complex plane kyky  0      kxkx Z 2 invariant: (= 0 or 1) w.f. parity at  i :    i ) Magnetic Field k Energy k = 0 Bulk Conduction Band Bulk Valence Band up spin down spin Dirac point Quantum Hall System 2D Topological Insulator n = 2 = 1

Topological Insulators Chern number: n Re u n 0 Im u n un(k)un(k) kxkx  kyky 0  Brillouin zone Complex plane kyky  0      kxkx Z 2 invariant: (= 0 or 1) w.f. parity at  i :    i ) Magnetic Field Quantum Hall System 3D Topological Insulator n = 2 E 2D Dirac cone Helical spin polarization

Bi 1-x Sb x Fu & Kane, PRB (2007) 3D Topological-Insulator Materials Band Inversion x = 0.10 Hsieh et al., Nature (2008) Bonding CF SOC Bi 2 Se 3 Zhang et al., Nat. Phys. (2009) Xia et al., Nat. Phys. (2009) BCB BVB

Bi 2 Se 3 Stanford-NHMFL Collaboration Sb-doped Bi 2 Se 3 Surface contribution ~0.1% Analytis et al., Nature Physics (2010) BCB BVB EFEF

Chalcogen ordering leads to characteristic peaks. Important Theme in TI Research : How to reduce bulk carriers and achieve a bulk-insulating state Bi 2 Te 2 Se  -dependence signifies that the Fermi surface is 2D. Activation behavior above 150 K with  = 23 meV Nominally stoichiometric crystals of Bi 2 Se 3 : n-type Bi 2 Te 3 : p-type Surface contribution is ~6% ! Ren, Ando et al., PRB (2010)

Bi 2-x Sb x Te 3-y Se y Ren, Ando et al., PRB (2011) Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 Thickness Dependence Taskin, Ando et al., PRL (2011) Surface-Dominated Transport In the 8-  m-thick sample, the surface contribution is 70%!

ARPES on Bi 2-x Sb x Te 3-y Se y y Arakane, Sato, Ando et al., Nature Commun. (2012)

Spin Pumping Symmetrical signal is due to bulk Seebeck effect caused by heating. Spin-Electricity Conversion from Spin-Momentum Locking Shiomi, Saitoh, Ando et al., PRL (2014)

BSTS Spin-MR Device (Kyoto) Bi 2 Se 3 +I -I Ando, Shiraishi, Ando et al., Nano Lett. (2014)

Bi 2 Se 3 Thin Films

40-nm thick film Taskin, Ando et al., Adv. Mater. (2012) Bi 2 Se 3

MBE-Grown Bi 2 Se 3 Fimls 50-nm thick film 2D Dirac 10-nm thick Film graphene graphite

Surface Morphology Across t c 3-nm Film 5-nm Film 8-nm Film Taskin, Ando et al., PRL (2012)

Topological Protection Hybridization of top and bottom surfaces Bottom surface Top surface Bottom surface hybridize Surface states become degenerate. EFEF  No protection from backscattering. Y. Zhang, Q.K. Xue et al., Nat. Phys. (2010) k Energy k = 0 Bulk Conduction Band Bulk Valence Band up spin down spin Dirac point EFEF Protection from backscattering

Topological Protection Hybridization of top and bottom surfaces Bottom surface Top surface Bottom surface hybridize Surface states become degenerate. EFEF Manifestation of the “topological protection” Taskin, Ando et al., PRL (2012)  No protection from backscattering. k Energy k = 0 Bulk Conduction Band Bulk Valence Band up spin down spin Dirac point EFEF Protection from backscattering

(Bi 1-x Sb x ) 2 Te 3 Thin Films Zhang et al., Nat. Commun. (2011)

Top-Gate Device Bi 2-x Sb x Te 3 Thin Film (30-nm thick) in situ capped with ~5-nm Al 2 O 3 (Dielectric layer: 200-nm SiN x ) Yang, Ando et al., APL (2014)

Bottom-Gate Device Bi 2-x Sb x Te 3 Thin Film (~20-nm thick)  Top Bottom  Top Bottom 150-nm SiO 2 Dielectric layer Top Gate

Dual-Gate Device Bi 2-x Sb x Te 3 Thin Film (~20-nm thick) Bottom Gate Top Gate Dual Gate  Top Bottom Yang, Ando et al., ACS Nano (2015)

Topological Crystalline Insulator … New Type of TI

Topological Crystalline Insulator SnTe SnTe Hsieh et al., Nature Commun. (2012) PbTe SnTe : contribution from Te p-orbital SnTe PbTe Band inversion + Mirror symmetry  Nontrivial Mirror Chern number kyky  0      kxkx Z 2 invariant = 0 Tanaka, Sato, Ando et al., Nature Physics (2012)

SnTe (111) Surface State Tanaka, Sato, Ando et al., PRB (2013)

SnTe (111) Surface State Tanaka, Sato, Ando et al., PRB (2013) Two Different Dirac Cones at  and M

SdH Oscillations in SnTe (111) Films 2D SnTe surface n ++ -Bi 2 Te 3 30 nm p ++ -SnTe 36 nm Sapphire 0.55 Taskin, Ando et al., PRB (2014) Dirac n-type carriers

SdH Oscillations in SnTe (111) Films 0.55 n-type carriers 2D Dirac k F = 1.8  10 6 cm -1 & 2.1  10 6 cm -1 Dirac fermions on the top SnTe surface Taskin, Ando et al., PRB (2014)

Topological Superconductor

Z Possible Topological Superconductors Time-Reversal Invariant (TRI) Time-Reversal Broken (TRB) 1D 2D 3D Z2Z2 Z2Z2 Z2Z2 Z - Schnyder-Ryu-Furusaki-Ludwig (2008) Kitaev (2009) “Periodic Table” of topological invariant Chiral p-wave SC in TI surface Surface State of TIs Bogoliubov qp EFEF TI SC  = 0 = 0  =  =  Fu & Kane (2008) EFEF 22 Majorana Edge State Sr 2 RuO 4 (D) (DIII)

2012 Bi 2 Te 3 n-type, 8  cm -3 Nb Clean limit  evidence for surface?

I c R N is ~10 times smaller than expected I c R N scales inversely with W B c (1 st minimum) is ~5 times smaller than expected Bi 2 Se 3, n-type, 8  cm -3

14-nm-thick (Bi,Sb) 2 Se 3 TCNQ surface doping Back-gating Ti(2.5 nm)/Al(140 nm) Finite supercurrent through surface state  /  0 ~ 0.23 n Flux focusing? 2013

T-dep. of I c gives evidence for ballistic junction through the surface state Small I c R N is explicable if the surface channel dictates R N

Bi 2 Se 3, n-type 9-nm thick n 2D = cm -2 Back gating L = 230 nm Andreev reflection Fabry-Perot oscillations ZBCP similar to that in 1D SOC nanowire (weak antilocalization?) Phase-coherent transport in TI  Due to topological protection of the surface state?

Bulk-insulating BSTS flake, 80 – 200 nm thick Junction width and length: ~50 nm I c R N is only 7  V  Mean free path: 10 – 40 nm Low transparency Diffusive transport through surface

Zero-bias anomaly  induced SC? No supercurrent in this experiment 50 or 70 nm-thick HgTe  3D TI  Nb = 1 meV, Andreev reflection Precursor to Fraunhofer pattern? Sample with improved interface

fluctuations originate from Josephson effect Supercurrent through the surface state Only 2  periodicity No signature of Majoranas, which is reasonable for a large number of unprotected modes 70 nm-thick HgTe as 3D TI

Skewness (due to the 2 nd harmonic) remains the same for varying W and L Fits very well to ballistic junction model  Josephson current is carried by ABS with high transmittance, which is possibly related to the helical nature of the surface state No inverse proximity effect  Absence of bulk states

2D TI

Evidence for supercurrents through the 1D helical edge state  in the bulk CB 2D TI, 7.5-nm HgTe W = 4  m L = 800 nm  in the bulk gap Similar result for InAs/GaSb arXiv:

Ferromagnetic Atomic Chain

Fe chain on Pb(110) Odd number of crossings Spin-polarized STM SC Tip (high resolution)  p-wave gap ~ 0.3 meV FM chain + Rashba SOC in s-wave SC