Chapter 27 The Synthesis and Degradation of Nucleotides to accompany

Slides:



Advertisements
Similar presentations
Synthesis and Degradation of Nucleotides Part 1: September 1 st, 2009 Champion CS Deivanayagam Center for Biophysical Sciences and Engineering University.
Advertisements

Nucleotide Metabolism C483 Spring A ribose sugar is added to ________ rings after their synthesis and to ________ rings during their synthesis.
OBJECTIVES: 1.Nomenclature of nucleic acids: a. nucleosides* b. nucleotides 2.Structure and function of purines and pyrimidines. 3.Origin of atoms in.
Nucleotide Metabolism Student Edition 6/3/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall Web Site:
Dr. S.Chakravarty, MD. A 30 year old man comes with severe pain in great toe of right foot !!
Nucleic Acids Metabolism
Principles of Biochemistry
Metabolism of purines and pyrimidines - exercise - Vladimíra Kvasnicová.
Detoxification of ammonia and biosynthesis of urea. The basic features of nitrogen metabolism were elucidated initially in pigeons.
BIOC Dr. Tischler Lecture 20 – February 10, 2006 METABOLISM: NUCLEOTIDE SYNTHESIS & DISORDERS.
1 Nucleotide Metabolism Nisa Rachmania Mubarik Major Microbiology Department of Biology, IPB 1212 Microbial Physiology (Nisa RM) ATP, are the sources of.
Nucleic Acid Metabolism Robert F. Waters, PhD
Chapter 26 Synthesis and Degradation of Nucleotides
Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 28-1The biosynthetic origins of purine ring atoms. Page 1069.
Nucleic acids metabolism
Final Exam Mon 8 am.
Chapter 26 The Synthesis and Degradation of Nucleotides Biochemistry
February 19 Chapter 27 Nucleic acid metabolism
Biochemistry 432/832 February 21 Chapters 27 and 28 Nucleic acid metabolism Integration of metabolic pathways.
Chapter 26 The Synthesis and Degradation of Nucleotides Biochemistry
Metabolism of amino acids, purine and pyrimidine bases
UNIT IV: Nitrogen Metabolism Nucleotide Metabolism Part 2.
Biosynthesis of nucleotides Natalia Tretyakova, Ph.D. Phar 6152 Spring 2004 Required reading: Stryer’s Biochemistry 5 th edition, p , (or.
Zhihong Li (李志红) Department of Biochemistry Biochemistry Ⅱ.
Nitrogen Fixation Nitrogen fixation is the reduction of ____________:
Lecture 30 Pyrimidine Metabolism/Disease Raymond B. Birge, PhD.
Synthesis and Degradation of Nucleotides Part 2: September 2 nd, 2009 Champion CS Deivanayagam Center for Biophysical Sciences and Engineering University.
Nucleic Acid metabolism. De Novo Synthesis of Purine Nucleotides We use for purine nucleotides the entire glycine molecule (atoms 4, 5,7), the amino nitrogen.
Metabolism of purine nucleotides A- De Novo synthesis: of AMP and GMP Sources of the atoms in purine ring: N1: derived from NH2 group of aspartate C2 and.
Nucleotide Metabolism -Biosynthesis-
Nucleotide Metabolism. Bases/Nucleosides/Nucleotides Base= Base Base + Sugar= Nucleoside Base + Sugar + Phosphate= Nucleotide AdenineDeoxyadenosine 5’-triphosphate.
BIOC/DENT/PHCY 230 LECTURE 5. glu UREA o synthesised mainly in liver o maintains N in a soluble, non-toxic form o transported in blood to kidney for.
BIOC/DENT/PHCY 230 LECTURE 6. Nucleotides o found in DNA and RNA o used for energy (ATP and GTP) o building blocks for coenzymes (NADH)
Nucleotide Metabolism -Biosynthesis- Dr. Sooad Al-Daihan 1.
Nucleotide metabolism Chapter 10. Function of neucleotides  Precursors for RNA and DNA synthesis  Energy substance in body (ATP)  Physiological Mediators.
: Nitrogen metabolism Part B Nucleotide metabolism.
PURINE & PYRIMIDINE METABOLISM dr Agus Budiman. Nucleotide consists purine / pyrimidine base, ribose/deoxyribose and phosphates. Nucleotide consists purine.
FCH 532 Lecture 28 Chapter 28: Nucleotide metabolism
Metabolism of purine nucleotides
Central Dogma of Biology. Nucleic Acids Are Essential For Information Transfer in Cells  Information encoded in a DNA molecule is transcribed via synthesis.
Metabolism of purines and pyrimidines Vladimíra Kvasnicová The figure was found at (Jan 2008)
Nucleotide metabolism
Nucleotide Metabolism
Chapter 8. Nucleotide Metabolism
Metabolism of purine nucleotides A- De Novo synthesis: of AMP and GMP Sources of the atoms in purine ring: N1: derived from NH2 group of aspartate C2 and.
METABOLISM OF PURINE NUCLEOTIDES &
Purine – Lecture. Nucleotides play key roles in many, many cellular processes 1. Activated precursors of RNA and DNA 2. Adenine nucleotides are components.
5’-IMP 5’-XMP 5’-GMP GDP GTP dGDP dGTP 5’-AMP ADP ATP dADP dATP.
Functions of Nucleotide: 1.Responsible for transmission of genetic informations 2. Act as energy currency 3.Carrier molecule for a broad spectrum of functional.
Chapter Twenty-Three The Metabolism of Nitrogen. Nitrogen Fixation Nitrogen fixation is the reduction of N 2 to NH 3: Bacteria are responsible for the.
Chapter Twenty-Three The Metabolism of Nitrogen. Nitrogen Fixation Nitrogen fixation is the reduction of N 2 to NH 3 : Bacteria are responsible for the.
Metabolism of purine nucleotides A- De Novo synthesis: of AMP and GMP Sources of the atoms in purine ring: N1: derived from NH2 group of aspartate C2 and.
Nucleotide Metabolism
Synthesis of Pyrimidine Nucleotides
Pratt and Cornely Chapter 18
Pratt and Cornely Chapter 18
Conversion of IMP to AMP
Nucleotide Metabolism
Synthesis Of Pyrimidine Nucleotides By Salvage Pathway
Pyrimidine metabolism
Department of Biochemistry
Pyrimidine Synthesis and Degradation
NUCLEIC ACID METABOLISM A. A. OSUNTOKI, Ph.D.. NUCLEIC ACIDS Polynucleotides i.e. polymers of nucleotides Two types Deoxyribonucleic acid (DNA) and Ribonucleic.
De Nova synthesis of Purine Nucleotides
Lecture 15 Slides rh.
Synthesis of Pyrimidine Nucleotides
PYRIMIDINE BIOSYNTHESIS
Figure 20.1 Synthesis of PRPP.
ATP? Depends on the system…..
Chapter 8. Nucleotide Metabolism
Presentation transcript:

Chapter 27 The Synthesis and Degradation of Nucleotides to accompany Biochemistry, 2/e by Reginald Garrett and Charles Grisham All rights reserved. Requests for permission to make copies of any part of the work should be mailed to: Permissions Department, Harcourt Brace & Company, 6277 Sea Harbor Drive, Orlando, Florida 32887-6777

Outline 27.1 Nucleotide Biosynthesis 27.2 The Biosynthesis of Purines 27.3 Purine Salvage 27.4 Purine Degradation 27.5 Biosynthesis of Pyrimidines 27.6 Pyrimidine Degradation 27.7 Deoxyribonucleotide Biosynthesis 27.8 Synthesis of Thymine Nucleotides

27.1 Nucleotide Biosynthesis Nearly all organisms synthesize purines and pyrimidines "de novo" Many organisms also "salvage" purines and pyrimidines from diet and degradative pathways Ribose generates energy, but purine and pyrimidine rings do not Nucleotide synthesis pathways are good targets for anti-cancer/antibacterial strategies

27.2 Biosynthesis of Purines John Buchanan (1948) "traced" the sources of all nine atoms of purine ring N-1: aspartic acid N-3, N-9: glutamine C-4, C-5, N-7: glycine C-6: CO2 C-2, C-8: THF - one carbon units

Inosine-5'-P Biosynthesis The purine ring is built on a ribose-5-P foundation First step: ribose-5-P must be activated - by PPi PRPP is limiting substance for purine synthesis But PRPP is a branch point so next step is the committed step - Gln PRPP amidotransferase Note that second step changes C-1 configuration G- and A-nucleotides inhibit this step - but at distinct sites! Azaserine - Gln analog - inhibitor/anti-tumor

Steps 3-5 Step 3: Glycine carboxyl condenses with amine Glycine carboxyl activated by -P from ATP Amine attacks glycine carboxyl Step 4: Formyl group of N10-formyl-THF is transferred to free amino group of GAR Step 5: C-4 carbonyl forms a P-ester from ATP and active NH3 attacks C-4 to form imine

Closure of the first ring, carboxylation and attack by aspartate Steps 6-8 Closure of the first ring, carboxylation and attack by aspartate Step 6: Similar in some ways to step 5. ATP activates the formyl group by phosphorylation, facilitating attack by N. Step 7: Carboxylation probably involves electron "push" from the amino group Step 8: Attack by the amino group of aspartate links this amino acid with the carboxyl group

Loss of fumarate, another 1-C unit and the second ring closure Steps 9-11 Loss of fumarate, another 1-C unit and the second ring closure Step 9: Deprotonation of Asp-CH2 leads to cleavage to form fumarate Step 10: Another 1-C addition catalyzed by THF Step 11: Amino group attacks formyl group to close the second ring Note that 5 steps use ATP, but that this is really six ATP equivalents! Dependence on THF in two steps means that methotrexate and sulfonamides block purine synthesis

Reciprocal control occurs in two ways - see Figures 27.6 and 27.7 Making AMP and GMP Reciprocal control occurs in two ways - see Figures 27.6 and 27.7 GTP is the energy input for AMP synthesis, whereas ATP is energy input for GMP AMP is made by N addition from aspartate (in the familiar way - see Figure 27.6) GMP is made by oxidation at C-2, followed by replacement of the O by N (from Gln) Last step of GMP synthesis is identical to the first two steps of IMP synthesis

and Lesch-Nyhan syndrome Purine Salvage and Lesch-Nyhan syndrome Salvage pathways collect hypoxanthine and guanine and recombine them with PRPP to form nucleotides in the HGPRT reaction Absence of HGPRT is cause of Lesch-Nyhan syndrome In L-N, purine synthesis is increased 200-fold and uric acid is elevated in blood This increase may be due to PRPP feed-forward activation of de novo pathways

Purine catabolism leads to uric acid (see Figure 27.9) Purine Degradation Purine catabolism leads to uric acid (see Figure 27.9) Nucleotidases and nucleosidases release ribose and phosphates and leave free bases Xanthine oxidase and guanine deaminase route everything to xanthine Xanthine oxidase converts xanthine to uric acid Note that xanthine oxidase can oxidize two different sites on the purine ring system

Xanthine Oxidase and Gout XO in liver, intestines (and milk) can oxidize hypoxanthine (twice) to uric acid Humans and other primates excrete uric acid in the urine, but most N goes out as urea Birds, reptiles and insects excrete uric acid and for them it is the major nitrogen excretory compound Gout occurs from accumulation of uric acid crystals in the extremities Allopurinol, which inhibits XO, is a treatment

Pyrimidine Biosynthesis In contrast to purines, pyrimidines are not synthesized as nucleotides Rather, the pyrimidine ring is completed before a ribose-5-P is added Carbamoyl-P and aspartate are the precursors of the six atoms of the pyrimidine ring

CPS II Carbamoyl phosphate for pyrimidine synthesis is made by carbamoyl phosphate synthetase II (CPS II) This is a cytosolic enzyme (whereas CPS I is mitochondrial and used for the urea cycle) Substrates are HCO3-, glutamine, 2 ATP See Figure 27.16

de novo Pyrimidine Synthesis Aspartate transcarbamoylase (ATCase) catalyzes the condensation of carbamoyl phosphate with aspartate to form carbamoyl-aspartate Note that carbamoyl phosphate represents an ‘activated’ carbamoyl group

More Pyrimidine Synthesis Step 3: ring closure and dehydration - catalyzed by dihydroorotase Step 4: Synthesis of a true pyrimidine (orotate) by DHO dehydrogenase Step 5: Orotate is joined with a ribose-P to form orotidine-5’-phosphate The ribose-P donor is PRPP Step 6: OMP decarboxylase makes UMP

Metabolic channeling Eukaryotic pyrimidine synthesis involves channeling and multifunctional polypeptides UDP is made from UMP, and UTP is made for UDP CTP sythetase forms CTP from UTP and ATP

Deoxyribonucleotide Biosynthesis Reduction at 2’-position commits nucleotides to DNA synthesis Replacement of 2’-OH with hydride is catalyzed by ribonucleotide reductase An 22-type enzyme - subunits R1 (86 kD) and R2 (43.5 kD) R1 has two regulatory sites, a specificity site and an overall activity site

Ribonucleotide Reductase Activity depends on Cys439, Cys225, and Cys462 on R1 and on Tyr122 on R2 Cys439 removes 3’-H, and dehydration follows, with disulfide formation between Cys225 and Cys462 The net result is hydride transfer to C-2’ Thioredoxin and thioredoxin reductase deliver reducing equivalents

Regulation of dNTP Synthesis The overall activity of ribonucleotide reductase must be regulated Balance of the four deoxynucleotides must be controlled ATP activates, dATP inhibits at the overall activity site ATP, dATP, dTTP and dGTP bind at the specificity site to regulate the selection of substrates and the products made

Synthesis of Thymine Nucleotides Thymine nucleotides are made from dUMP, which derives from dUDP, dCDP dUDPdUTPdUMPdTMP dCDPdCMPdUMPdTMP Thymidylate synthase methylates dUMP at 5-position to make dTMP N5,N10-methylene THF is 1-C donor Note role of 5-FU in chemotherapy