Boris N. Chichkov Leibniz University Hannover

Slides:



Advertisements
Similar presentations
Opto-Electronics & Materials Laboratory Li-Jen Chou ( ) Investigations on low-dimensional nanostructures: synthesis, characterization, applications and.
Advertisements

Vapor-deposited thin films with negative real refractive index in the visible regime J. J. Yi, A. Lakhatakia, W. Y. Ching, T.L. Chin Optics Express Vol.
Anodic Aluminum Oxide.
Mikko Nisula Overview Introduction Plasmonics Theoretical modeling Influence of particle properties Applications.
Nanonics SPM Probes Nanonics probes Product Presentation.
Ohki Labo. Research Activities. Polymer Gr. (Polymer material) 1. Polymer Gr. (Polymer material) Environment problems, Global heating, Biodegradability,
X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann.
Silicon Nanowire based Solar Cells
Developing photonic technologies for dielectric laser accelerators
OUTLINE Introduction „Tera-to-Nano“: Our Novel Near-Field Antenna 80 GHz CW Frequency Domain Measurements Picosecond Pulse Time Domain Measurements 2D.
Lavinia P. Rajahram 18 th April 2014 NANO LASER. SHRINKING THE LASER!
Nanopatterning of Silicon Carbide by UV and Visible Lasers. By Arvind Battula 12/02/2004.
THz left –handed EM in composite polar dielectrics Plasmonic excitations in nanostructured materials Cristian Kusko and Mihai Kusko IMT-Bucharest, Romania.
Surface-Enhanced Raman Scattering (SERS)
1 Air Force Research Laboratory Dr. Michael F. Durstock, , Device Architectures.. Aluminum ITO Glass V Electron.
Light and Nanotechnology : How Do we “See” Something Too Small to See?
Magnificent Optical Properties of Noble Metal Spheres, Rods and Holes Peter Andersen and Kathy Rowlen Department of Chemistry and Biochemistry University.
Fiona Beck Small Particles, Big Hopes: Absorption Enhancement in Silicon using Metallic Nanoparticles.
Theoretical investigations on Optical Metamaterials Jianji Yang Supervisor : Christophe Sauvan Nanophotonics and Electromagnetism Group Laboratoire Charles.
Plasmon Assisted Nanotrapping E. P. Furlani, A. Baev and P. N. Prasad The Institute for Lasers, Photonics and Biophotonics University at Buffalo, SUNY.
Nucleation of gold nanoparticles on graphene from Au 144 molecular precursors Andrei Venter 1, Mahdi Hesari 2, M. Shafiq Ahmed ­1, Reg Bauld 1, Mark S.
Metamaterial Emergence of novel material properties Ashida Lab Masahiro Yoshii PRL 103, (2009)
THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals
Optical Properties of Metal Nanoparticles
Highly Ordered Nano-Structured Templates: Enabling New Devices, Sensors, and Transducers Student:Gilad A. Kusne (1st Year PhD) Professors:D. N. Lambeth.
LASER BEAM MACHINING BY S.PREMKUMAR.
Www. nanometatech.com © 2012 Nano-Meta Technologies, Inc. Metamaterials for future information and computer technologies.
Overview of course Capabilities of photonic crystals Applications MW 3:10 - 4:25 PMFeatheringill 300 Professor Sharon Weiss.
磁流體實驗. Role of magnetic fluids In the early 20 th century Solid state physics   Nanoparticles Nanostructured materials Nanodevices Nanoparticles Nanostructured.
The nanoparticle-plasmon resonance for proteomics Bongsu, Jung Jaehun, Seol Final Project, ME381R December 2,2004.
Quantum Dot Nucleation in Glass Microsphere Resonators Anu Tewary (student) and Mark Brongersma (PI) Stanford University, DMR A thin layer of Si-rich.
Effect of Thin Coatings on Surface Plasmon-Enhanced Infrared Spectroscopy using Ni Mesh Microarrays Kenneth R. Rodriguez, Shannon Teeters- Kennedy, Hong.
Creative Research Initiatives Seoul National University Center for Near-field Atom-Photon Technology - Near Field Scanning Optical Microscopy - Electrostatic.
M. Zamfirescu, M. Ulmeanu, F. Jipa, O. Cretu, A. Moldovan, G. Epurescu, M. Dinescu, R. Dabu National Institute for Laser Plasma and Radiation Physics,
Fabrication of oxide nanostructure using Sidewall Growth 田中研 M1 尾野篤志.
Optics on a Nanoscale Using Polaritonic and Plasmonic Materials (NSF NIRT ) Andrey Chabanov 1, Federico Capasso 2, Vinothan Manoharan 2, Michael.
Third Int. Conf. Quantum, Nano, and Micro Tech. (ICQNM 2009) February 1-6, 2009 — Cancun, Mexico Heat Transfer in Thin Films Thomas Prevenslik Berlin,
Measurement of nano-scale physical characteristics in VO 2 nano-wires by using Scanning Probe Microscope (SPM) Tanaka lab. Kotaro Sakai a VO 2 nano-wire.
Chapter 2 Properties on the Nanoscale
Nanometric optical tweezers based on nanostructured substrates Miyasaka Lab. Hiroaki YAMAUCHI A. N. Grigorenko, N. W. Roberts, M. R. Dickinson & Y. Zhang.
Femtosecond laser fabrication of metamaterials for high frequency devices Marian Zamfirescu *a), Razvan Dabu *, Marius Dumitru *, George Sajin **, Florea.
Optical Trapping of Quantum Dots Based on Gap-Mode-Excitation of Localized Surface Plasmon J. Phys. Chem. Lett. 1, (2010) Ashida Lab. Shinichiro.
Femtosecond lasers for sub-surface tissue cutting Chris B. Schaffer.
ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 11: Thermal Property Measurement Techniques For Thin Films and Nanostructures.
Metamaterials, some drawn some not. Boris Kuhlmey 10/8/12.
ALD Thin Film Materials LDRD review 2009NuFact09.
Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and.
Spring Celebration Donald Lucas, Ph.D. Profs. Cathy Koshland (PI), Lydia Sohn, Peidong Yang, and John Arnold Nanotechnology-Based Environmental.
Atomic Layer Deposition for Microchannel Plates Jeffrey Elam Argonne National Laboratory September 24, 2009.
Computational Nanophotonics Stephen K. Gray Chemistry Division Argonne National Laboratory Argonne, IL Tel:
Bi-Axially Textured Ni Tapes Fabricated by a Cold Rolling Process of Nickel Powder Compacts Scott Bartz 17 September 2007.
2. Design Determine grating coupler period from theory: Determine grating coupler period from theory: Determine photonic crystal lattice type and dimensions.
Two-Dimensional Patterning of Nanoparticle Thin Films from in situ Microreactors Jonathan Dwyer Arizona Space Grant Symposium April 18,
Atomic Layer Deposition for Microchannel Plate Fabrication at Argonne
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
Andrew van Bommel February 28th, 2006
High-voltage nanoimprint lithography of refractory metal films Dr. John A. Dagata.
A brief overview of Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells V.E. Ferry, L.A. Sweatlock, D. Pacifici, and H.A. Atwater,
High performance optical absorber based on a plasmonic metamaterial 岑剡.
6/7/20161 THz near-field imaging and micro-spectroscopy -J. Knab, A.J.L. Adam, N. Kumar R. Chakkittakandy, R. N. Schouten, TUD -M. Nagel, RWTH Aachen -Eric.
Bacterial cellulose in electrochemical films
Qihuang Gong, Xiaoyong Hu, Jiaxiang Zhang, Hong Yang Department of Physics, Peking University, Beijing, P. R. China Composite Materials for Ultrafast and.
Surfaceplasmons in solar power Enhancing Efficiency of Solar Cells and Solar Thermal Collectors with surface Plasmon Resonances in Metal Nanoparticles.
Surface-Enhanced Raman Scattering (SERS)
Introduction of Nanoplasmonics 2011 Spring Semester.
Plasmonic waveguide filters with nanodisk resonators
Superconducting Electromagnetic
Date of download: 12/18/2017 Copyright © ASME. All rights reserved.
Date of download: 12/18/2017 Copyright © ASME. All rights reserved.
LITHOGRAPHY Lithography is the process of imprinting a geometric pattern from a mask onto a thin layer of material called a resist which is a radiation.
Presentation transcript:

Boris N. Chichkov Leibniz University Hannover Nanomanufacturing Boris N. Chichkov Leibniz University Hannover 16.04.2017 b.chichkov@lzh.de

Two-photon polymerization Laser ablation Laser printing Laser nanomanufacturing technologies near IR fs-pulses resin Two-photon polymerization Laser ablation Laser printing

Fs laser microstructuring SEM image of high quality microchip fabricated in 400 µm thick AlN substrate

Laser generation of nanoparticles target laser Nano- particle Liquid High purity and stability Monoatomic materials Alloy nanoparticles Particle surface-functionalization Polymer-embedded nanoparticle Coatings with nanosized particles Controlled drug-release Stoichiometric nanoparticles Novel methods  better control J. Phys. Chem. C, 2010 Appl. Phys. A, 2010 4

Fabrication of spherical nanoparticles by laser printing Receiver substrate (glass) Tightly focused fs laser pulse Thin Au film Donor substrate (glass) „Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial application“ JOSA B, Vol. 26, No. 12, B130, 2009 5

Controlled fabrication and precise deposition of silicon nanoparticles 200 nm Receiver substrate (glass) Bulk silicon Tightly focused fs laser pulse Silicon nanoparticle Silicon dioxide Silicon donor layer 50 µm „Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses“, Nature Communications, 5, No. 3402, (2014). 6

Nanotechnology with lasers 3D nanostructuring by two-photon polymerization Ormocer near IR fs-pulses resin Opt. Lett. 28, 301, (2003) Adv. Eng. Mat. 5, 551, (2003) Deutsches Patent 101 52 878.7-43

PhCs fabricated in Zr-hybrid polymers This is the SEM image of the woodpile structure produced by 2PP. The period is 900nm and the rod thickness is 300nm. In the magnified top view one can see throught the four upper layers. Nature Photonics, v. 3, 450 (2009)

Two-photon polymerization (5cm/s) This is the SEM image of the woodpile structure produced by 2PP. The period is 900nm and the rod thickness is 300nm. In the magnified top view one can see throught the four upper layers. Commercially available 2PP system from LZH: b.chichkov@lzh.de

Microoptics: Tapered waveguides Im folgenden Beispiel wurde eine solche 3D Taperstruktur mit Hilfe der 2PP hergestellt. Der Taper sollte auf der Einkoppelseite einen Querschnitt von 10 µm haben und dann in einen 2 µm Wellenleiter übergehen, der einen Single-Mode Wellenleiter für Licht mit 1500 nm Wellenlänge darstellt. Man sieht hier erste Ergebnisse zu diesen Strukturen im REM Bild.

Fabrication of SRRs by laser direct-writing Mechanical properties of the polymer allow fabrication of free standing SRRs Excitation of magnetic resonance for radiation incident perpendicular to substrate surface (kz) FDTD simulation of single SRR response Ring diameter: 5 µm Wire diameter: 800 nm Gap width: 800 nm Resonance: 11 µm wavelength (RLC model)

3D conductive polymer microstructures PEG-DA and EDOT blends are used for 2PP and sequential in-situ oxidative polymerization; Real-3D, physically stable and biocompatible microstructures are produced; Interpenetrating polymer network of PEG-DA and PEDOT leads to conductivities of up to 0.04 S/cm. EDOT PEDOT PEG-DA : poly(ethylene glycol) diacrylate EDOT : 3,4-ethylenedioxythiophene PEDOT : poly(3,4-ethylenedioxythiophene)

3D ultralight and ultra strong materials

Surface plasmon-polaritons for data transport Plasmonics Photonics 1 THz 1 GHz Operating speed Electronics 1 MHz The Past 1 kHz 10 nm 100 nm 1 µm 10 µm 100 µm 1 mm Critical dimension R. Zia et al., Materials Today 9, 20 (2006) 14

Surface plasmon-polaritons Bandwidth of light: 400 THz – 750 THz Core size: ~ 8 µm Bandwidth of electronics: ~ 10 GHz pitch: ~ 65 nm 15