L O A Victor Malka LOA, ENSTA – CNRS - École Polytechnique, 91761 Palaiseau cedex, France COULOMB05, Senagolia, Italy, September 12-16 (2005) State of.

Slides:



Advertisements
Similar presentations
Laser-Plasma Accelerators : Status, Applications and Perspectives
Advertisements

Vulcan Front End OPCPA System
Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
Erdem Oz* USC E-164X,E167 Collaboration Plasma Dark Current in Self-Ionized Plasma Wake Field Accelerators
New hardware and setups New short pulse regime Experimental results TW power Future plans on laser development ATF CO 2 LASER progress Vitaly Yakimenko.
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Physics of a 10 GeV laser-plasma accelerator stage Eric Esarey HBEB Workshop, Nov , C. Schroeder, C. Geddes, E. Cormier-Michel,
L O A Journées accélérateurs, Roscoff, FRANCE, 9-12 (2005) Laser-plasma accelerators: Status and perspectives Victor Malka LOA, ENSTA – CNRS - École Polytechnique,
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
C. McGuffey a, W. Schumaker a, S. Kneip b, F. Dollar a, A. Maksimchuk a, A. G. R. Thomas a, and K. Krushelnick a (a) University of Michigan, Center for.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
SENIGALLIA-COULOMB09 1 Protons Acceleration with Laser: influence of pulse duration M. Carrié and E. Lefebvre CEA, DAM, DIF, Arpajon, France A. Flacco.
Historical Review on the Plasma Based Particle Accelerators Congratulation for opening “Plasma and Space Science Center” Yasushi Nishida Lunghwa University.
Particle-Driven Plasma Wakefield Acceleration James Holloway University College London, London, UK PhD Supervisors: Professor Matthew wing University College.
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
Coulomb09, Senigallia, Ultra-High Brightness electron beams from laser driven plasma accelerators Luca Serafini, INFN-Milano Brightness Degradation.
Ultra-High-Intensity Laser-Plasma Interactions: Comparing Experimental Results with Three- Dimensional,Fully-Relativistic, Numerical Simultations Donald.
Lecture 3: Laser Wake Field Acceleration (LWFA)
1D Relativistic Plasma Equations (without laser) cold plasma Consider an electron plasma with density N(x,t), velocity u(x,t), and electric field E(x,t),
EuroNNAc Workshop, CERN, May 2011 External Injection at INFN-LNF ( integrating RF photo-injectors with LWFA ) Luca Serafini - INFN/Milano High Brightness.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
ENHANCED LASER-DRIVEN PROTON ACCELERATION IN MASS-LIMITED TARGETS
Laser driven particle acceleration
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
Eric Esarey W. Leemans, C. Geddes, C. Schroeder, S. Toth,
Temporal characterization of laser accelerated electron bunches using coherent THz Wim Leemans and members of the LOASIS Program Lawrence Berkeley National.
UCLA Frequency-domain interferometry diagnostic system for the detection of relativistic plasma waves Catalin V. Filip, Electrical Engineering Department,
FACET and beam-driven e-/e+ collider concepts Chengkun Huang (UCLA/LANL) and members of FACET collaboration SciDAC COMPASS all hands meeting 2009 LA-UR.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Winni Decking Impressions from the Dream Beams Symposium Max-Planck-Institut fuer Quantenoptik (MPQ)
All-optical accelerators
Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Recent Results on the Plasma Wakefield Acceleration at FACET E 200 Collaboration 1)Beam loading due to distributed injection of charge in the wake reduces.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
UNIVERSITY OF MARYLAND AT COLLEGE PARK High-intensity optical slow-wave structure for direct laser electron acceleration H.M. Milchberg, B.D. Layer, A.
Stable and Tuneable Laser Plasma Accelerators
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
LASER-PLASMA ACCELERATORS: PRODUCTION OF HIGH-CURRENT ULTRA-SHORT e - -BEAMS, BEAM CONTROL AND RADIATION GENERATION I.Yu. Kostyukov, E.N. Nerush (IAP RAS,
W.Lu, M.Tzoufras, F.S.Tsung, C.Joshi, W.B.Mori
1 1 Office of Science C. Schroeder, E. Esarey, C. Benedetti, C. Geddes, W. Leemans Lawrence Berkeley National Laboratory FACET-II Science Opportunities.
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
Design Considerations of table-top FELs laser-plasma accelerators principal possibility of table-top FELs possible VUV and X-ray scenarios new experimental.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
BESTIA – the next generation ultra-fast CO 2 laser for advanced accelerator research Igor Pogorelsky Misha Polyanskiy, Marcus Babzien, John Skaritka, Ilan.
Summary WG5 R&D for Innovative Accelerators Greg LeBlanc.
Strategies for Future Laser Plasma Accelerators J. Faure, Y. Glinec, A. Lifschitz, A. Norlin, C. Rechatin, & V.Malka Laboratoire d’Optique Appliquée ENSTA-Ecole.
1March 28 - April 1, 2016 Havana, Physics and Applications of High Brightness Beams Advanced electron acceleration experiments planned at the CILEX-Apollon.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
Friedrich-Schiller-University Jena
Introduction to Plasma Physics and Plasma-based Acceleration Wakefield acceleration Various images provided by R. Bingham.
V.N. Litvinenko (SBU) C. Joshi, W. Mori (UCLA)
Laser Plasma Accelerators: Principle & applications
M. Chen,1 M. Zeng,1 Z. M. Sheng,1,3 L. L. Yu,1 W. B. Mori,2 S. Li,1 N
The 2nd European Advanced Accelerator Concepts Workshop
SUPA, Department of Physics, University of Strathclyde,
8-10 June Institut Henri Poincaré, Paris, France
ULTRA-HIGH BRIGHTNESS ELECTRON BEAMS BY PLASMA BASED INJECTORS FOR ALL
Laboratoire d’Optique Appliquée
Tunable Electron Bunch Train Generation at Tsinghua University
Wakefield Accelerator
Control of laser wakefield amplitude in capillary tubes
All-Optical Injection
E-164 E-162 Collaboration: and E-164+X:
شتاب الکترون در برهم­کنش با پالس لیزری نامتقارن
Beam loading at a nanocoulomb-class laser wakefield accelerator
Presentation transcript:

L O A Victor Malka LOA, ENSTA – CNRS - École Polytechnique, Palaiseau cedex, France COULOMB05, Senagolia, Italy, September (2005) State of Art of Laser-Plasma Accelerators Laser beam Electron beam 1 mm Laser beam proton beam 1  m

L O A Particle group F. Ewald J. Faure Y. Glinec A. Lifschitz J.J. Santos Laser group F. Burgy B. Mercier J.Ph. Rousseau A.Pukhov, University of Dusseldorf, Germany ELF SPL Collaborators E. Lefebvre, CEA/DAM Ile-de-France, France Supported by EEC under FP6 : CARE

L O A E-field max ≈ few 10 MeV /meter (Breakdown) R>R min Synchrotron radiation Classical accelerator limitations LEP at CERN 27 km Circle road 31 km New medium : the plasma Energy = Length = $$$ ≈ PARIS

L O A Why is a Plasma useful ? Plasma is an Ionized Medium High Electric Fields epz nE~~ w Superconducting RF-Cavities : E z = 55 MV/m ez nE~ Are Relativistic Plasma waves efficient ? E z = 0.3 GV/m for 1 % Density Perturbation at cc -1 E z = 300 GV/m for 100 % Density Perturbation at cc -1

L O A Tajima&Dawson, PRL79 How to excite Relativistic Plasma waves ? The laser wake field  laser ≈ T p / 2 = >Short laser pulse Laser pulse F≈-grad I Electron density perturbation Phase velocity v  epw =v g laser => close to c Analogy with a boat

L O A F≈-grad I Train of short resonant pulses Laser envelop modulation    k     k 2 How to excite Relativistic Plasma waves? (ii) The laser beat waves  1 -  2 =  p Linear growth : d(t)=1/4a 1 a 2 w p t =>Homogenous plasmas Saturation : relativistic, ion motion Optical demonstration by Thomson scattering : Clayton et al. PRL 1985,Amiranoff et al. PRL 1992,, Dangor et al. Phys. Scrypta 1990 Chen, Introduction to plasma physics and controlled fusion, 2 nd Edition, Vol.1, (1984) Motivations

L O A electron Analogy: t 1 t 2 t 3  e >>   >> 1 => E max (MeV)=(  n/n)(n c /n e ) =>L deph. =(=( 0 /2)(n c /n e ) 3/2 E max =2(  n/n)   2 mc 2 L Deph. = p   2 Analogy electron/surfer Motivations

L O A Motivations

L O A Few MeV gain Laser Injected electrons Few MeV Injected electrons acceleration with laser : Wake field, Beat wave Motivations

L O A Electron Acceleration : LBWF Electron spectra indicate an E field of ≈ 0.7 GV/m   = 100,  e = 6,  laser = 40 µm,  e = 40 µm, divergence = 10 mrad Electrons number experiment ,33,43,53,63,73,83,9 Theory Energy (MeV) d = 1,6% LULI/LPNHE/LPGP/LSI/IC Electron gain demonstration Few MeV’s: Kitagawa et al. PRL 1992,Clayton et al. PRL 1993,N. A. Ebrahim et al., J. Appl. Phys.1994, Amiranoff et al. PRL 1995 Motivations

L O A How to generate an electron beam? Self-modulated Laser Wakefield Scheme (Andreev, Sprangle, Mora 1992) c  p enhances Wavebreaking P c (GW) = 17  0 2 /  p 2 Short Pulse Energetic Electrons if then excites Modena et al., Nature 1995

L O A Wave breaking : from waves to particles

L O A. Relativistic wave breaking Electrons/MeV detector limit Energy (MeV) n e =0.5x10 19 cm -3 n e =1.5x10 19 cm -3

L O A Review of some Former Experiments on LabYear ProcessE L Rate E e RAL1995* SMLWF50 J 20 min 44 MeV 1998 SMLWF 50 J 20 min 100 MeV NRL1997 SMLWF 5 J 5 min 30 MeV MPQ1999 DLA 0.2 J 10 Hz 10 MeV LOA 1999 SMLWF 0.6 J 10 Hz 70 MeV LOA2001 FLWF 1 J 10 Hz200 MeV Electron Beam Generation Large scale, energetic laser, with low repetition rate

L O A 5-pass Amp. : 200 mJ 8-pass pre-Amp. : 2 mJ Oscillator : 2 nJ, 15 fs Stretcher : 500 pJ, 400 ps After Compression : 1 J, 30 fs, 0.8  m, 10 Hz, m Nd:YAG : 10 J 4-pass, Cryo. cooled Amp. : < 3.5 J, 400 ps Salle Jaune Laser

L O A E max (MeV) n e (cm -3 ) E max =4  p 2 m e c 2 dn n Tunable electron beam : temperature Electrons are accelerated by epw V. Malka et al., PoP (2001) F/6 INCREASE THE ACCELERATION LENGTH

L O A Interaction chamber (inside) Laser beam electron beam 50 cm

L O A Summary of FLWF previous results V. Malka et al., Science, 298, 1596 (2002) Energy (MeV) Detection Threshold Number of electron (/MeV/sr) Experiments

L O A

SMLWF : Multiple e - bunches / FLWF Single e - bunch Electron bunches laser Electric field Ps V. Malka, Europhysics news, April 2004 Ps/fs Electron bunch laser Electron density perturbation n e /n 0 -1 Electric field 0 fs

L O A Quasi-Monoenergetic Electron Beams In homogenous plasma : virtual or real? E, MeV t=350 t=450 t=550 t=650 t=750 t= N e / MeV Time evolution of electron spectrum monoenergetic electron beam VLPL A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B, 74, p.355 (2002) One stage LPA

L O A Experimental Setup : single shot measurement

L O A 2.0 x cm -3 Divergence = 6 mrad Recent results on e-beam : Spatial quality improvements 6.0 x cm x cm x cm x cm x cm -3

L O A Recent results on e-beam : From Mono to maxwellian spectra Electron density scan V. Malka, et al., PoP 2005

L O A Charge in [ ] MeV : (500 ±200) pC Energy distribution improvements: The Bubble regime PIC Experiment Divergence = 6 mrad

L O A S. Mangles et al., C. Geddes et al., J. Faure et al., in Nature 30 septembre 2004

L O A Some Applications... X-rays:diffraction medicine  -rays:radiography Medicine Radiotherapy Proton-therapy PET Accelerator Physics Chemistry Radiolysis Electrons and Protons generated by Laser-Plasma Interactions + X ray Larmor X ray laser

L O A GeV acceleration in two-stages GeV Laser Plasma channel TW ~50 fs Nozzle Gas-Jet Laser 170±20 MeV 30 fs 10 mrad 1 J 10 TW 30 fs Pulse guiding condition : Δn>1/πr e r c 2 Weak nonlinear effects  more control : a 0 ~ 1-2 High quality beams : L b <λ p  n 0 <10 18 cm -3 rcrc ΔnΔn n0n0 Density profile

L O A GeV in low plasma density in plasma channel n 0 = cm -3, 11 J TW r c =40 μm, Δn=2 n 0 L channel =4 cm 8 cm 12 cm dN/dE(a.u.) Energy (MeV) Electron bunch Electric field Electron bunch Electric field

L O A On the ultra short duration benefit fs radiolysis : H 2 O (e - s, OH., H 2 O 2, H 3 O +, H 2, H. ) e-e- Very important for: Biology Ionising radiations effects B. Brozek-Pluska et al., Radiation and Chemistry, 72, (2005) **Ar.

L O A In collaboration with L. Le-Dain, S. Darbon from CEA Mourainvilier and DAM Material science:  -ray radiography High resolution radiography of dense object with a low divergence, point-like electron source Glinec et al., PRL 94 p (2005)

L O A  -radiography results A-A' cut 20mm Cut of the object in 3D Spherical hollow object in tungsten with sinusoidal structures etched on the inner part. Measured Calculated Source size estimation : 450 um

L O A Medical application : Radiotherapy VHE ELECTRONS

L O A Dose deposition profile in water Glinec et al., accepted in Med. Phys.

L O A Laser plasma acceleration has demonstrated Energy gains of 1 MeV to 200 MeV E-fields of 1 GV/m to 1000 GV/m Good e-beam quality : Emittance < 3  mm.mrad charge at high energy Quasi monoenergetic Very high peak current : 100 kA Laser plasma accelerators advantages Provide e-beam with new parameters : short Provide e-beam with new parameters : high current Provide e-beam with new parameters : Collimated Compact and low cost The laser plasma accelerators status ゝ ゝ ゝ ゝ ゝ ゝ ゝ ゝ ゝ ゝ

L O A Laser plasma accelerator: enhance stability electron sources up to ≈ 1 GeV (nC, <1 ps): Guiding or PW class laser systems Single Stage (Pukhov, Mori) (200TW) Generate a tunable e-beam applications of these electron sources Compact XFEL Perspectives

L O A A revolution is coming…one of the most evolving field in Science, a wonderful tool for academic formation