Patrick Sebbah Nicolas Bachelard, Sylvain Gigan Institut Langevin, ESPCI ParisTech CNRS UMR 7587, Paris A. Christian Vanneste, Xavier Noblin LPMC – Université.

Slides:



Advertisements
Similar presentations
Classical behaviour of CW Optical Parametric Oscillators T. Coudreau Laboratoire Kastler Brossel, UMR CNRS 8552 et Université Pierre et Marie Curie, PARIS,
Advertisements

Multi-wave Mixing In this lecture a selection of phenomena based on the mixing of two or more waves to produce a new wave with a different frequency, direction.
Ultrafast Experiments Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics II (Spring.
Laser Physics EAL 501 Lecture 6 Power & Frequency.
Nonlinear Optics Lab. Hanyang Univ. Chapter 8. Semiclassical Radiation Theory 8.1 Introduction Semiclassical theory of light-matter interaction (Ch. 6-7)
Nanophotonics Class 6 Microcavities. Optical Microcavities Vahala, Nature 424, 839 (2003) Microcavity characteristics: Quality factor Q, mode volume V.
Chul Min Kim, Karol A. Janulewicz, and Jongmin Lee Coherent Amplification of Ultrashort Pulses in a High-gain Medium: X-ray Lasers Seeded with High-Harmonic.
Components of ultrafast laser system
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
The Propagation of Light
Optical Engineering for the 21st Century: Microscopic Simulation of Quantum Cascade Lasers M.F. Pereira Theory of Semiconductor Materials and Optics Materials.
William Guerin A random laser with cold atoms Institut Non Linéaire de Nice (INLN) CNRS and Université Nice Sophia-Antipolis.
Light Amplification by Stimulated
COMPUTER MODELING OF LASER SYSTEMS
Lavinia P. Rajahram 18 th April 2014 NANO LASER. SHRINKING THE LASER!
EM Radiation Sources 1. Fundamentals of EM Radiation 2. Light Sources
1.2 Population inversion Absorption and Emission of radiation
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Absorption and emission processes
Ch 6: Optical Sources Variety of sources Variety of sources LS considerations: LS considerations: Wavelength Wavelength  Output power Output power Modulation.
Optical Pumping Intense light source at h  (e.g. flash lamp) Excites to a metastable state to achieve population inversion With fast flashing, initial.
Fiber Optic Light Sources
Chapter 12. Multimode and Transient Oscillation
Computational Physics Approaches to Model Solid-State Laser Resonators Konrad Altmann LAS-CAD GmbH, Germany LASer Cavity Analysis & Design.
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Ashida lab M1 toyota M. Cai, O.Painter, K. J. Vahala, Opt. Lett. 25, 1430 (2000). Fiber-coupled microsphere laser.
. Random Lasers Gregor Hackenbroich, Carlos Viviescas, F. H.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
High power ultrafast fiber amplifiers Yoann Zaouter, E. Cormier CELIA, UMR 5107 CNRS - Université de Bordeaux 1, France Stephane Gueguen, C. Hönninger,
Palaiseau - FRANCE Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral Modifications in Ultra-Short Petawatt Lasers C. Radier1,2, F. Giambruno1,3,
Some of the applications of Photonic Crystals (by no means a complete overview) Prof. Maksim Skorobogatiy École Polytechnique de Montréal.
Does a theory of semiconducting laser line width exist? B. Spivak UW, S. Luryi SUNY.
ECE 455: Optical Electronics Lecture #9: Inhomogeneous Broadening, the Laser Equation, and Threshold Gain Substitute Lecturer: Tom Spinka Tuesday, Sept.
Chapter 10. Laser Oscillation : Gain and Threshold
Superradiance, Amplification, and Lasing of Terahertz Radiation in an Array of Graphene Plasmonic Nanocavities V. V. Popov, 1 O. V. Polischuk, 1 A. R.
The authors gratefully acknowledge the financial support of the EPSRC Nonresonant random lasing from a smectic A* liquid crystal scattering device S. M.
PHYSICS DEPARTMENT.
Light-induced instabilities in large magneto-optical traps G. Labeyrie, F. Michaud, G.L. Gattobigio, R. Kaiser Institut Non Linéaire de Nice, Sophia Antipolis,
1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Dynamics of Anderson localization
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
1 Superluminal Light Pulses, Subluminal Information Transmission Dan Gauthier and Michael Stenner * Duke University, Department of Physics, Fitzpatrick.
Quantum Effects in BECs and FELs Nicola Piovella, Dipartimento di Fisica and INFN-Milano Rodolfo Bonifacio, INFN-Milano Luca Volpe (PhD student), Dipartimento.
Electromagnetic waves: Reflection, Refraction and Interference
Probing fast dynamics of single molecules: non-linear spectroscopy approach Eli Barkai Department of Physics Bar-Ilan University Shikerman, Barkai PRL.
Cavity soliton switching and pattern formation in an optically-pumped vertical-cavity semiconductor amplifier Laboratoire de Photonique et de Nanostructures.
CONSERVATION LAWS FOR THE INTEGRATED DENSITY OF STATES IN ARBITRARY QUARTER-WAVE MULTILAYER NANOSTRUCTURES Sergei V. Zhukovsky Laboratory of NanoOptics.
Chapter 11. Laser Oscillation : Power and Frequency
Summary Kramers-Kronig Relation (KK relation)
Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances: Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009.
Microwave Mesoscopics Speckle and Phase Singularity Evolution for Diffusive and Localized Waves Patrick Sebbah Laboratoire de Physique de la Matière Condensée.
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Instability of optical speckle patterns in cold atomic gases ? S.E. Skipetrov CNRS/Grenoble (Part of this.
Saturable absorption and optical limiting
Theory for Direct Frequency-Comb Spectroscopy Daniel Felinto and Carlos E.E. López 65 th International Symposium on Molecular Spectroscopy June 24, 2010.
Investigation of the Saturation Mechanism of Recoil-induced Resonances Joel A. Greenberg, Marcos Oria, and Daniel J. Gauthier Duke University 5/28/2008.
101° CONGRESSO NAZIONALE DELLA SOCIETA ITALIANA DI FISICA Roma, settembre 2015 Spatial Rogue Waves in Photorefractive Ferroelectrics Fabrizio Di.
§8.4 SHG Inside the Laser Resonator
Free Electron Laser Studies
Quantum optics Eyal Freiberg.
Light-Matter Interaction
MEDICAL LASER SYSTEMS Assist Prof. Dr. Lutfi Ghulam Awazli
Emission regimes of random lasers with spatially localized feedback
Principle of Mode Locking
Advanced Optical Sensing
Kenji Kamide* and Tetsuo Ogawa
Jaynes-Cummings Hamiltonian
Presentation transcript:

Patrick Sebbah Nicolas Bachelard, Sylvain Gigan Institut Langevin, ESPCI ParisTech CNRS UMR 7587, Paris A. Christian Vanneste, Xavier Noblin LPMC – Université de Nice– CNRS UMR 6622, Nice, France Jonathan Andreasen University of Arizona, Optical Sciences, Tucson (AZ) Kiran Bhaktha Indian Institute of Technology Kharagpur, India Supported by the Agence Nationale de la Recherche (ANR GLAD)

In a conventional laser light scattering introduces additional loss, thus increases lasing threshold Gain Medium : Light amplification Optical Cavity : Feedback Pour la Science n°396, Oct 2010

Multiple scattering :  dwell time increases  enhanced light amplification Lethokov, Sov. Phys. JETP 26, 835 (1968). Review: Wiersma, Nature Physics, 4, 359(2008) Wiersma, Nature, 406, 132(2000) Mirrorless laser : ASE or lasing with resonant feedback ?

H. Cao et al., Appl. Phys. Lett. 76, 2997 (2000)

Spectrum Emission

H. Cao et al., Appl. Phys. Lett. 76, 2997 (2000) Spectrum Emission

H. Cao et al., Appl. Phys. Lett. 76, 2997 (2000) Spectrum Emission

Feedback for lasing is phase sensitive (coherent) and therefore frequency dependent (resonant). (not ASE)  How lasing can occur in a fully open structure ?  How is coherent feedback possible in a random structure where phases are randomized ?

J. Andreasen et al., “Modes of Random Lasers”, Advances in Optics and Photonics, Vol. 3 Issue 1, pp (2011).

Reduced scattering (smaller n S ) Anderson Localization 2D random collection of scatterers with refractive index n S in [1.05,2] in a matrix with n 0 =1

FDTD Method to simulate Maxwell equations coupled to the population equations of of a four-level atomic structure Laser Field Amplitude Min Max Time evolution Time Intensity Emission spectrum Frequency Intensity Vanneste et al. PRL87 (2001), Sebbah et al. PRB66 (2002) n S = 2

Time evolution Time Intensity Emission spectrum Frequency Intensity Vanneste et al. PRL98 (2007) Laser Field Amplitude Min Max Vanneste et al., PRL98, (2007) n S = 1.25

 Random lasing occurs even in the diffusive regime (extended modes – no confinement). Threshold depends on mode confinement  Lasing modes are built on the resonances/quasinormal modes of the passive cavity These resonances are selected by the gain True in the singlemode regime Vanneste et al. PRL87 (2001), Sebbah et al. PRB66 (2002), Vanneste et al. PRL98 (2007)

K. Bhaktha et al., "An optofluidic random laser", APL 101, (2012)

IN OUT 3 mm Rhodamine 6G Δn = 0.06 Weak scattering Modes are extended PDMS K. Bhaktha et al., "An optofluidic random laser", APL 101, (2012)

IN OUT 3 mm K. Bhaktha et al., "An optofluidic random laser", APL 101, (2012)

All characteristics of classical lasers (threshold, narrow emission lines, Poissonian photon statistics) +  Random emission spectrum  Non-directive laser emission  Complex structure of lasing modes  Strong dependence on pumping area

If design is greatly simplified, control over directionality and frequency emission is lost  Can control over random lasing emission be regained ?  Idea : spatial shaping of the optical pump  Inspired from spatial shaping methods recently employed for coherent light control  Iterative method without prior knowlegde of the lasing modes.

N. Bachelard et al., "Taming random lasers", PRL 109, (2012)

N. Bachelard et al., "Active control of random laser emission", in preparation

 Numerical model valid only below threshold  Does not include  Spectrum to spectrum fluctuations  Gain saturation  Mode competition  Laser instabilities

Starting from uniform pumping IN OUT 3 mm

IN OUT 3 mm

IN OUT 3 mm

IN OUT 3 mm

 Singlemode operation at any desired mode  Optimal redistribution of the gain  Reduced threshold

 Optimization of random laser directivity  Optimization of pulse duration  Extension to control of other type of lasers  Organic 2D lasers  Broad area lasers  …

 For fundamental interest :  Nature of the lasing modes J. Andreasen et al., AOP 3 (2011)  Revisiting laser equation in absence of a cavity H. Tureci et al., Science 320 (2008)  Multimode regime & Nonlinear phenomena J. Andreasen et al., JOSAB28 (2011), PRA84 (2011) ……  For possible applications :  where mirrors are not available H. Cao, Optics & Photonics News (2005)  in bio & chemical sensing K. Bhaktha et al., ", APL 101 (2012)  as intense, spatially incoherent light sources B. Redding et al., Optics Lett. 36 (2011) ……

R. Kaiser, Cold atoms J. Fallert et al. Nature Photonics, 279 (2009) C. López, Photonic Glass RL Garcia et al., PRB 82 (2010) Sapienza et al., Science 327 (2010) Wiersma, PRL 93, (2004)