Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich 09.09.2013 Nuclear.

Slides:



Advertisements
Similar presentations
The Hadron Physics Program at COSY-ANKE: selected results
Advertisements

Mitglied der Helmholtz-Gemeinschaft TSU HEPI Double-polarised np-scattering experiments at ANKE David Mchedlishvili for the ANKE collaboration HEPI, Tbilisi.
A proposal for a polarized 3 He ++ ion source with the EBIS ionizer for RHIC. A.Zelenski, J,Alessi, E.Beebe, A.Pikin BNL M.Farkhondeh, W.Franklin, A. Kocoloski,
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
Spin Filtering Studies at COSY and AD Alexander Nass for the collaboration University of Erlangen-Nürnberg SPIN 2008, Charlottesville,VA,USA, October 8,
Patricia Aguar Bartolomé Institut für Kernphysik, Universität Mainz PSTP 2013 Workshop, Charlottesville 11th September 2013.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich Nuclear.
IPN Orsay FEW-BODY 19th – Bonn Jean-Pierre DIDELEZ Persistence of the Polarization in a Fusion Process J. P. Didelez IPN and C. Deutsch LPGP Orsay DT polarization.
Study of Deuteron-Deuteron Scattering at 65 MeV/nucleon Ahmad Ramazani-Moghaddam-Arani (KVI-Cracow-Katowice-IUCF) 19th International IUPAP Conference on.
The Size and Shape of the Deuteron The deuteron is not a spherical nucleus. In the standard proton-neutron picture of this simplest nucleus, its shape.
Mitglied der Helmholtz-Gemeinschaft DSMC simulations of polarized atomic beam sources including magnetic fields September 13, 2013 | Martin Gaisser, Alexander.
Spin physics at Storage Rings
DT polarization and Fusion Process Magnetic Confinement Inertial Confinement Persistence of the Polarization - Polarized D and 3 He in a Tokamak - DD Fusion.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Deuterium/Hydrogen Molecules Possible Fuel for Nuclear Fusion Reactors? by Ralf Engels.
Fragmentation mechanisms for Methane induced by electron impact
Lecture on Targets A. Introduction scattering exp., gas target, storage ring B. Basics on Vacuum, Gas Flow etc pumps, molecular flow & tubes, T-shaped.
Mitglied der Helmholtz-Gemeinschaft Petersburg Nuclear Physics Institute, Russia Storage cells for internal experiments with Atomic Beam Source at the.
K. Czerski Institute of Physics, University of Szczecin Euratom Workshop Szczecin, Deuteron Fusion Reactions in Metallic Environments.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Hydrogen/Deuterium Molecules A new Option for Polarized Targets? by Ralf Engels JCHP.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Mitglied der Helmholtz-Gemeinschaft Polarized Fusion by Giuseppe Ciullo INFN and University of Ferrara for Ralf Engels JCHP / Institut für Kernphysik,
HD target. HD target overview Characteristics of polarized HD target Polarization Method HD target is polarized by the static method using “brute force”
Overview I3HP 1 I3 Hadron Physics – Joint Research Projects Polarized Nucleon Targets for Europe Speaker: W. Meyer M€ Scientific Case Scientific.
Mitglied der Helmholtz-Gemeinschaft TSU TBILISI STATE UNIVERSITY The pn-system Study at Internal ANKE Experiment HEPI, Tbilisi State University IKP, Forschungszentrum.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
Deuteron Polarimetry at COSY September 13, 2007 D.Eversheim, PSTP Some Introductory Remarks Some Experimental Details Concerning EDDA Deuteron Polarimetry.
The tensor analysing power component T 21 of the exclusive π - - meson photoproduction on deuteron in the resonance region. V.N.Stibunov 1, L.M. Barkov.
RIKEN/Tokyo-Russia Collaboration of Polarized Deuteron Experiments CNS, Univ. of Tokyo T. Uesaka.
Possibility to increase intensity of polarized hydrogen target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia Spin Physics Workshop.
Status of the Source of Polarized Ions project for the JINR accelerator complex (June 2013) V.V. Fimushkin, A.D. Kovalenko, L.V. Kutuzova, Yu.V. Prokofichev.
Conference photo Sponsorship Workshop was supported by International Committee for High Energy Spin Physics International Science and Technology Center.
Mitglied der Helmholtz-Gemeinschaft Physics at COSY-Jülich December 2010 | Hans Ströher (Forschungszentrum Jülich, Univ. Cologne) Baryons´10, Osaka (Japan),
Laser-Driven H/D Target at MIT-Bates Ben Clasie Massachusetts Institute of Technology Ben Clasie, Chris Crawford, Dipangkar Dutta, Haiyan Gao, Jason Seely.
Study of unbound 19 Ne states via the proton transfer reaction 2 H( 18 F,  + 15 O)n HRIBF Workshop – Nuclear Measurements for Astrophysics C.R. Brune,
1 Yuri Shestakov Budker Institute of Nuclear Physics Novosibirsk, Russia Tagging system of almost-real photons for photonuclear experiments at VEPP-3 Moscow,
MIT-Bates Laser Driven Target Introduction Achieved and expected results Installation plan and timeline B. Clasie, C. Crawford, D. Dutta, H. Gao, J. Seely,
TENSOR POLARIZED DEUTERON BEAM AT THE NUCLOTRON Yu.K.Pilipenko, V.P.Ershov, V.V.Fimushkin, A.Yu.Isupov, L.V.Kutuzova, V.P.Ladigin, N.M.Piskunov, V.P.Vadeev,
Extra Physics with an Atomic Beam Source and a Lamb-Shift Polarimeter
Phys 102 – Lecture 27 The strong & weak nuclear forces.
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY Ralf Engels for the ANKE-Collaboration Institut für Kernphysik, Forschungszentrum.
1 Possibility to obtain a polarized hydrogen molecular target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia XIV International.
A. Zelenski a, G. Atoian a *, A. Bogdanov b, D.Raparia a, M.Runtso b, D. Steski a, V. Zajic a a Brookhaven National Laboratory, Upton, NY, 11973, USA b.
Applications of Nuclear Physics
P.F.Dalpiaz16 june Polarized Antiproton at FAIR The PAX experiment P.F.Dalpiaz P.F.DalpiazFerrara 2 workshop on the QCD structure of the nucleon.
1/30/2016Douglas E. Fields for the p+C CNI collaboration 1 Test of Small Angle Elastic Proton-Carbon Scattering as a High Energy Proton Beam Polarimeter.
The Polarized Internal Target at ANKE: First Results Kirill Grigoryev Institut für Kernphysik, Forschungszentrum Jülich PhD student from Petersburg Nuclear.
P. Kravtsov Petersburg Nuclear Physics Institute DOUBLE POLARIZED DD-FUSION P. Kravtsov, N. Chernov, K. Grigoryev, I. Ivanov, E. Komarov,
The Lineage of Nuclear Polarization Instrumentation Often Leads Through Madison Thomas B. Clegg University of North Carolina at Chapel Hill and Triangle.
Coherent Pion Production induced by neutrino and hadron beam Yasuhiro SAKEMI Research Center for Nuclear Physics (RCNP) Osaka University Contents Physics.
17th Crystal Ball Meeting
1 Nuclear Fusion Class : Nuclear Physics K.-U.Choi.
The Polarized Internal Gas Target of ANKE at COSY
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Proton Polarimetry Proton polarimeter reactions RHIC polarimeters.
Institute for Nuclear Physics Ralf Gebel – PSTP 2007 – September 2007 Facility overview Ion sources at COSY R&D details.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
PSA: ADAPTIVE GRID SEARCH The Method Experimental Results Optimization aspects Roberto Venturelli (INFN Padova - IPSIA “Giorgi” Verona) SACLAY, 05-may-06.
Mitglied der Helmholtz-Gemeinschaft Development of 3D Polarimeters for storage ring EDM searches JEDI Collaboration | David Chiladze (IKP, Forschungszentrum.
Mitglied der Helmholtz-Gemeinschaft Summary of the target session of the IEB Workshop June 19, 2015 | Alexander Nass.
10/10/2008 Mitglied der Helmholtz-Gemeinschaft First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY Ralf Engels for the ANKE collaboration.
Polarized internal gas target at LHC
New concept of light ion acceleration from low-density target
FUSION PROPULSION.
Petersburg Nuclear Physics Institute
Study of Strange Quark in the Nucleon with Neutrino Scattering
Feasibility Study of the Polarized 6Li ion Source
Advantages of Nuclear Fusion
Production and Storage of Polarized H2, D2 and HD Molecules
Recent results from BLAST detector
Presentation transcript:

Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich Nuclear Fusion with Polarized Particles

2 Can the total cross section of the fusion reactions be increased by using polarized particles ? Polarized Fusion Total cross section (c.m.) t + d 4 He + n 3 He + d 4 He + p d + d 3 He + n d + d t + p

3 Can the trajectories of the ejectiles be controlled by use of polarized particles ? Polarized Fusion Total cross section Differential cross section

4 Can the total cross section of the fusion reactions be increased by using polarized particles ? 3 He + d 4 He + p Factor: ~1.5 at 430 keV t + d 4 He + n Factor: ~1.5 at 107 keV J = 3/2 + / s-wave dominated Polarized Fusion [Ch. Leemann et al., Helv. Phys. Acta. 141 (1971)]

5 Measurements in Basel 1971 An increased total cross section is possible !!! Polarized fuel will increase the diff. cross section for ϑ = 0°/180° and decrease for ϑ = 90° !!! H. Paetz gen. Schieck, Eur. Phys. J. A 44, (2010)

6 What is the advantage for fusion reactors ? Polarized Fusion Laser Pellet target (DT or DD pellets) (Berkeley, Orsay, Darmstadt, …) 2.) Inertial Fusion (Laser induced fusion) 1.) Magnetic confinement: not linear !!!

7 What is the advantage for fusion reactors ? 1.) Calculation by M. Temporal et al. for the „Megajoule“ Project Polarized Fusion No optimization of the laser power: E abs * =185 kJ

8 What is the advantage for fusion reactors ? 1.) Calculation by M. Temporal et al. for the „Megajoule“ Project Polarized Fusion M. Temporal et al.; Ignition conditions for inertial confinement fusion targets with a nuclear spin-polarized, Nucl. Fusion 52 (2012) dt-Fusion

9 What is the advantage for fusion reactors ? Polarized Fusion Laser Pellet target (DT pellets) Magnetic field -More gain by use of (more) elliptic targets ? -Trajectories of ejectiles aligned with magnetic holding field => simplified cooling of the reactor

10 Which questions must be solved ? 1.) Dependence of the total cross section from the polarization for all fusion reactions. Polarized Fusion d + d t + p 3 He + n Can cross sections be increased ? Can neutrons be suppressed ? Can the trajectories of the neutrons be controlled?

11 Spins of both deuterons are aligned: Only p z (q z ) and p zz (q zz ) ≠ 0 Only beam is polarized: (p i,j ≠ 0, q i,j = 0) σ(,Φ) = σ 0 () · {1 + 3/2 A y () p y + 1/2 A xz () p xz + 1/6 A xx-yy () p xx-zz + 2/3 A zz () p zz } Polarized Fusion

12 Deltuva and Fonseca, Phys. Rev. C 81 (2010) Polarized Fusion

13 The Experimental Setup in St. Petersburg ABS and LSP from the SAPIS Project, Uni. of Cologne 1. Setup: Target Density: ~ a/cm 2 Beam Intensity: > 1.5 μA ~ /s → Luminosity: ≤ /cm 2 s E d = 100 keV → σ = 15.5 mbarn → count rate: ~ 155 / h → 1 month of beam time E d = 30 keV → σ = 1.2 mbarn → count rate: ~ 12 / h → 10 month of beam time ISTC Project # 3881 DFG Project: EN 902/1-1

14 The Experimental Setup in St. Petersburg ABS from the SAPIS project: (after upgrade) ~ 4 ∙ a/s → ~ 2 ∙ a/cm 2 POLIS (KVI, Groningen) Ion beam: I ≤ 20 μA → 1.5 ∙ d/s ( E beam ≤ 32 keV ) dd-fusion polarimeter LSP from POLIS LSP from the SAPIS project Luminosity: 3 ∙ /cm 2 s → count rate: ~ 40 /h → 2 month of beam time Detector Setup: 4π covered by - large pos. sens. Detectors - (~300 single PIN diodes ?) ABS from Ferrara: ~ 6 ∙ a/s → ~ 3 ∙ a/cm 2 Luminosity: 4.5 ∙ /cm 2 s → count rate: ~ 60 /h → 1 month of beam time

15 PNPI

16 Status in spring 2012

17 The Detector Setup Readout electronics requirements:  320 PIN diodes  ≤ 1kHz total count rate  Amplitude analyzer  Common clock for off-line coincidence analysis  Custom CSP (Charge Sensitive Preamplifiers) Proof of principle: L. Kroell. Diploma thesis, FZJ – RWTH. 4-  detector setup with 60% filling ~300 Hamamatsu Si PIN photodiodes (S3590) 1cm 2 active area 300um depletion layer good energy resolution (17keV for 1MeV Carbon ions at RHIC)

18 The Electron Screening Effect Distance Coulomb Potential Astrophysical S-Factor: F. Raiola et al.; Eur. Phys. J. A 13, 377 (2002) Nuclear Potential

19 The Electron Screening Effect Distance Coulomb Potential ?

20 Which questions must be solved ? 1.) Dependence of the total cross section from the polarization for all fusion reactions. 2.) Polarization conservation in the different plasmas ? a.) Magnetic confinement: - R.M. Kulsrud et al.; Phys. Rev. Lett. 49, 1248 (1982) b.) Inertial Fusion: - J.P. Didelez and C. Deutsch; 2011 Laser and Particle Beams M. Büscher (IKP) / Prof. O. Willi (Uni. Düsseldorf) „Laser Acceleration“ Polarized Fusion

21 Laser Acceleration ~ 100 GV/m Proton rich dot 20x20x0.5 μm 10 8 protons at 1.5 MeV protons up to 10 MeV Laser Acceleration of pol. 3 He 2+ ions from pol. 3 He gas targets

22 Which questions must be solved ? 1.) Dependence of the total cross section from the polarization for all fusion reactions. 2.) Polarization conservation in the different plasmas ? 3.) How to produce polarized fuel ? - inertial fusion: - HD targets are available (10 mK, ~1 T) (relatively small polarization ~ 40%) - frozen spin DT targets possible - magnetic confinement: a.) pol. 3 He is available („Laser-pumping“) b.) pol. T will be possible with a similar method c.) pol. D ??? Polarized Fusion

23 ANKE/COSY Main parts of a PIT: Atomic Beam Source Target gas hydrogen or deuterium H/D beam intensity (2 hyperfine states) / atoms/s Beam size at the interaction point σ = 2.85 ± 0.42 mm Polarization for hydrogen/deuterium P Z = 0.89 ± 0.01 P Z = ± 0.01 P Z = ± 0.01 / ± 0.01 Pzz = ± 0.03 / ± 0.01 Lamb-Shift Polarimeter Storage Cell See next talk

24 Polarized H 2 (D 2 ) Molecules Nuclear Polarization of Hydrogen Molecules from Recombination of Polarized Atoms T.Wise et al., Phys. Rev. Lett. 87, (2001). Measurements from NIKHEF, IUCF, HERMES show that recombined molecules retain fraction of initial nuclear polarization of atoms! polarized unpolarized P m = 0.5 Is there a way to increase P m (surface material, T, B etc)? Eley-Rideal Mechanism See talk on Thuesday !!!

25 The Setup ISTC Project # 1861 PNPI, FZJ, Uni. Cologne DFG Project: 436 RUS 113/977/0-1

26 Polarized H 2 /D 2 Molecules  Recombination of polarized atoms into molecules  Conversion of polarized atoms and molecules into ions  Conversion of H 2 + and H + ions into protons with different energy (suggested by W.Haeberli)  Separation of protons by energy  Measurement of proton and H 2 -ions polarization in LSP polarized cell wall B ~ 1T +

27 Polarized H 2 Molecules P m = ± 0.02 n = 277 ± 31 Protons: P m = ± 0.02 n = 174 ± 19 c = ± Measurements on Fomblin Oil (Perfluorpolyether PFPE) HFS 3 H 2 - Ions: + T Cell = 100 K

28 Measurements on Fomblin Oil (Perfluorpolyether PFPE) HFS 3 HFS 2+3 B cell = 0.4 T ; H 2 only + Polarized H 2 Molecules More Details: Talk on …..

29 Which questions must be solved ? 1.) Dependence of the total cross section from the polarization for all fusion reactions. 2.) Polarization conservation in the different plasmas ? 3.) How to produce polarized fuel ? - inertial fusion: - frozen spin DT targets possible (relatively small polarization ~ 40%) - HD targets are available - magnetic confinement: a.) pol. 3 He is available („Laser-pumping“) b.) pol. T will be possible with a similar method c.) pol. D ??? (or pol. D 2 ??) Polarized Fusion

30 Outlook Workshop on Nuclear fusion with polarized nucleons at ECT* in Trento at 14./15. of November

31 Possible Polarized H 2 /D 2 source Idea of D. Toporkov, Budger Institute, Novosibirsk