C82MST Statistical Methods 2 - Lecture 4 1 Overview of Lecture Last Week Per comparison and familywise error Post hoc comparisons Testing the assumptions.

Slides:



Advertisements
Similar presentations
Intro to ANOVA.
Advertisements

Prepared by Lloyd R. Jaisingh
Overview of Lecture Partitioning Evaluating the Null Hypothesis ANOVA
Analysis of Variance (ANOVA) ANOVA methods are widely used for comparing 2 or more population means from populations that are approximately normal in distribution.
PTP 560 Research Methods Week 9 Thomas Ruediger, PT.
Analysis and Interpretation Inferential Statistics ANOVA
Hypothesis testing Week 10 Lecture 2.
Using Statistics in Research Psych 231: Research Methods in Psychology.
Using Statistics in Research Psych 231: Research Methods in Psychology.
Lecture 10 PY 427 Statistics 1 Fall 2006 Kin Ching Kong, Ph.D
C82MST Statistical Methods 2 - Lecture 7 1 Overview of Lecture Advantages and disadvantages of within subjects designs One-way within subjects ANOVA Two-way.
Using Statistics in Research Psych 231: Research Methods in Psychology.
ANOVA Analysis of Variance: Why do these Sample Means differ as much as they do (Variance)? Standard Error of the Mean (“variance” of means) depends upon.
Overview of Lecture Parametric Analysis is used for
Lecture 9: One Way ANOVA Between Subjects
One-way Between Groups Analysis of Variance
Independent Sample T-test Often used with experimental designs N subjects are randomly assigned to two groups (Control * Treatment). After treatment, the.
Statistics for the Social Sciences
Today Concepts underlying inferential statistics
Using Statistics in Research Psych 231: Research Methods in Psychology.
Introduction to Analysis of Variance (ANOVA)
Chapter 14 Inferential Data Analysis
Richard M. Jacobs, OSA, Ph.D.
Chapter 12 Inferential Statistics Gay, Mills, and Airasian
Chapter 12: Analysis of Variance
Psy B07 Chapter 1Slide 1 ANALYSIS OF VARIANCE. Psy B07 Chapter 1Slide 2 t-test refresher  In chapter 7 we talked about analyses that could be conducted.
AM Recitation 2/10/11.
ANCOVA Lecture 9 Andrew Ainsworth. What is ANCOVA?
Jeopardy Hypothesis Testing T-test Basics T for Indep. Samples Z-scores Probability $100 $200$200 $300 $500 $400 $300 $400 $300 $400 $500 $400.
Part IV Significantly Different: Using Inferential Statistics
ANOVA Greg C Elvers.
COURSE: JUST 3900 INTRODUCTORY STATISTICS FOR CRIMINAL JUSTICE Instructor: Dr. John J. Kerbs, Associate Professor Joint Ph.D. in Social Work and Sociology.
Chapter 13: Introduction to Analysis of Variance
1 CSI5388: Functional Elements of Statistics for Machine Learning Part I.
Chapter 11 HYPOTHESIS TESTING USING THE ONE-WAY ANALYSIS OF VARIANCE.
Chapter 12: Introduction to Analysis of Variance
t(ea) for Two: Test between the Means of Different Groups When you want to know if there is a ‘difference’ between the two groups in the mean Use “t-test”.
Educational Research: Competencies for Analysis and Application, 9 th edition. Gay, Mills, & Airasian © 2009 Pearson Education, Inc. All rights reserved.
Psychology 301 Chapters & Differences Between Two Means Introduction to Analysis of Variance Multiple Comparisons.
Statistics (cont.) Psych 231: Research Methods in Psychology.
Hypothesis testing Intermediate Food Security Analysis Training Rome, July 2010.
Chapter 10: Analyzing Experimental Data Inferential statistics are used to determine whether the independent variable had an effect on the dependent variance.
I. Statistical Tests: A Repetive Review A.Why do we use them? Namely: we need to make inferences from incomplete information or uncertainty þBut we want.
Statistics for the Social Sciences Psychology 340 Fall 2012 Analysis of Variance (ANOVA)
Educational Research Chapter 13 Inferential Statistics Gay, Mills, and Airasian 10 th Edition.
Chapter 13 - ANOVA. ANOVA Be able to explain in general terms and using an example what a one-way ANOVA is (370). Know the purpose of the one-way ANOVA.
Analysis of Variance (One Factor). ANOVA Analysis of Variance Tests whether differences exist among population means categorized by only one factor or.
1 ANALYSIS OF VARIANCE (ANOVA) Heibatollah Baghi, and Mastee Badii.
Chapter 13 Repeated-Measures and Two-Factor Analysis of Variance
Data Analysis.
Two-Way (Independent) ANOVA. PSYC 6130A, PROF. J. ELDER 2 Two-Way ANOVA “Two-Way” means groups are defined by 2 independent variables. These IVs are typically.
Quiz 11  Analysis of Variance (ANOVA)  post hoc tests.
Introduction to ANOVA Research Designs for ANOVAs Type I Error and Multiple Hypothesis Tests The Logic of ANOVA ANOVA vocabulary, notation, and formulas.
Handout Six: Sample Size, Effect Size, Power, and Assumptions of ANOVA EPSE 592 Experimental Designs and Analysis in Educational Research Instructor: Dr.
Analysis of Variance STAT E-150 Statistical Methods.
Outline of Today’s Discussion 1.Independent Samples ANOVA: A Conceptual Introduction 2.Introduction To Basic Ratios 3.Basic Ratios In Excel 4.Cumulative.
Statistics (cont.) Psych 231: Research Methods in Psychology.
Chapter 13 Understanding research results: statistical inference.
One-way ANOVA with SPSS POSTGRADUATE METHODOLOGY COURSE Hairul Hafiz Mahsol Institute for Tropical Biology & Conservation School of Science & Technology.
HYPOTHESIS TESTING FOR DIFFERENCES BETWEEN MEANS AND BETWEEN PROPORTIONS.
Independent Samples ANOVA. Outline of Today’s Discussion 1.Independent Samples ANOVA: A Conceptual Introduction 2.The Equal Variance Assumption 3.Cumulative.
Statistics (cont.) Psych 231: Research Methods in Psychology.
©2013, The McGraw-Hill Companies, Inc. All Rights Reserved Chapter 4 Investigating the Difference in Scores.
Educational Research Inferential Statistics Chapter th Chapter 12- 8th Gay and Airasian.
Inferential Statistics Psych 231: Research Methods in Psychology.
Inferential Statistics Psych 231: Research Methods in Psychology.
Psych 231: Research Methods in Psychology
Psych 231: Research Methods in Psychology
Psych 231: Research Methods in Psychology
Chapter 10 – Part II Analysis of Variance
Presentation transcript:

C82MST Statistical Methods 2 - Lecture 4 1 Overview of Lecture Last Week Per comparison and familywise error Post hoc comparisons Testing the assumptions of ANOVA Using SPSS to conduct a one-way between groups ANOVA

C82MST Statistical Methods 2 - Lecture 4 2 Last Week - Analysis of Variance A one-way between groups ANOVA conducted on: IV - three lecturing styles (each assigned 5 students) DV - exam score (0….20) Results F 1,12 =7.41, MSe=14.17, p<.01 LecturesWorksheetsBoth 6 (1.41)9 (1.87)15 (1.73) Table 1: The means (and standard errors) of the exam scores for the three different teaching styles

C82MST Statistical Methods 2 - Lecture 4 3 Last Week - Planned comparisons Before we set out to collect the data, we made specific predictions about the direction of the effects used a technique known as planned (a priori) comparisons. Tested the prediction that lectures+worksheets would produced better performance on the exam than worksheets alone The result was that lectures+worksheets did indeed lead to better performance on the exam (F 1,12 =14.29, MSe=14.17, p<0.01)

C82MST Statistical Methods 2 - Lecture 4 4 Per Comparison and Familywise Error A Type I error has been defined as the probability of rejecting the null hypothesis when in fact the null hypothesis is true. This applies to every statistical test that we perform on a set of data. If we perform several statistical tests on a set of data we can effectively increase the chance of making a Type I error.

C82MST Statistical Methods 2 - Lecture 4 5 An example of familywise error fMRI data: often 64x64x64 voxels Chance of one of these voxels being active at the 0.05 level is very high. By chance, we expect 13,107 voxels at 0.05! How can we control for Type I errors?

C82MST Statistical Methods 2 - Lecture 4 6 Per comparison and familywise error rates If we perform two statistical tests on the same set of data then we have a range of opportunities of making a Type I error. Type I error on the first test only Type I error on the second test only Type I error on both the first and the second test Type I errors involving single tests are known as per comparison errors. The whole set of Type I errors above is known as the familywise error.

C82MST Statistical Methods 2 - Lecture 4 7 Per comparison and familywise error rates The relationship between the two error rates is very simple: where c is the number of comparisons. So if we have made three comparisons, we can expect 3*(0.05) = 0.15 errors. If we make twenty comparisons, we will on average make one error [20*0.05=1.0]. Of course, if we make twenty comparisons, it is possible that we may be making 0, 1, 2 or in rare cases even more errors.

C82MST Statistical Methods 2 - Lecture 4 8 Type I error rates and analytical comparisons With planned comparisons : Ignore the theoretical increase in familywise type I error rates and reject the null hypothesis at the usual per comparison level. With post hoc or unplanned comparisons between the means we cannot afford to ignore the increase in familywise error rate.

C82MST Statistical Methods 2 - Lecture 4 9 Post hoc analytical comparisons A variety of different post hoc tests are commonly used - for example Scheffé Tukey HSD t-tests These tests vary in their ability to protect against Type I errors. Increasing Type I protection reduces Type II protection.

C82MST Statistical Methods 2 - Lecture 4 10 The Scheffé test The Scheffé is calculated in exactly the same way as a planned comparison Scheffé differs in terms of the F Critical that is adopted. For the one-way between groups analysis of variance the critical F associated with an F Scheffé is given by: where a is the number of treatment levels and F (dfA, dfS/A) is the critical value of F for the overall, omnibus analysis of variance. For our example Omnibus ANOVA critical value F(2,12)= There were three treatment levels so (3-1)*3.885= F observed = when comparing lectures+worksheets with lectures alone

C82MST Statistical Methods 2 - Lecture 4 11 Tukey HSD The Tukey (Honestly Significant Difference) test establishes a value for the smallest possible significant difference between two means. Any mean difference greater than the critical difference is significant The critical difference is given by: where q( ,df,a) is found in tables of the studentized range. This particular formula only works for between groups analysis of variance with equal cell sizes A variety of different formulae are used for different designs

C82MST Statistical Methods 2 - Lecture 4 12 t-tests When comparing two means, a modified form of the t- test is available. For multiple comparisons the critical value of t is found using p=0.05/c where c is the number of comparisons. This is known as a Bonferroni correction

C82MST Statistical Methods 2 - Lecture 4 13 Post hoc tests Post-hoc tests are conservative – they reduce the chance of type I errors by greatly increasing type II errors. Only very robust effects will be significant. Null results using these tests are not easy to interpret. Many different post hoc tests exists and have different merits and problems Many post hoc tests are available on computer based statistical packages (e.g. SPSS or Experstat)

C82MST Statistical Methods 2 - Lecture 4 14 The assumptions of the F-ratio Independence The numerator and denominator of the F-ratio are independent Random Sampling Observations are random samples from the populations Homogeneity of Variance The different treatment populations have the same variance. Normality Observations are drawn from normally distributed populations

C82MST Statistical Methods 2 - Lecture 4 15 Testing Assumptions of Anova Each of these assumption should be met before progressing onto the analysis. There are two assumptions that we have to assume have been met by the experimenter Independence and Random Sampling If an experiment has been designed appropriately both of these assumptions will be true. Both the homogeneity of variance and the normality assumptions need not necessarily be true.

C82MST Statistical Methods 2 - Lecture 4 16 Testing Homogeneity of Variance When looking a between groups designs use Hartley's F-max Bartlett Cochran's C When looking at within or mixed designs use Box's M All these tests are sensitive to departures from normality All of these tests are available in SPSS (as are a number of other tests)

C82MST Statistical Methods 2 - Lecture 4 17 Testing Homogeneity of Variance - A heuristic For hand calculations, there is a quick and dirty measure of homogeneity of variance: Note: this is a heuristic. When you have the option, use one of the specific tests (e.g. Bartlett).

C82MST Statistical Methods 2 - Lecture 4 18 Testing normality The three most commonly used tests for normality are: Skew Lilliefors Shapiro-Wilks These tests compare the distribution of the data to a theoretically derived normal distribution. All these tests are very sensitive to departures from normality when there are large samples. The Lilliefors and Shapiro-Wilks are difficult to calculate by hand, but both are available on SPSS.

C82MST Statistical Methods 2 - Lecture 4 19 Testing normality by examining skew Since we assume that the distributions of the population from which the samples are taken are normal and the skew of a normal distribution is equal to zero Then One test of normality is to see if the skew is significantly different to zero In other words, test the value of skew to see if it deviates significantly from a normal distribution.

C82MST Statistical Methods 2 - Lecture 4 20 Testing skew The simplest test we can use is a z-score. In the case of skew the z-score is given by: The standard error of skew is given by where N is the number of cases in the sample. If a z score associated with the skew is greater than |±1.96| then the sample is significantly different from normal. In other words, a value of skew which is significantly different from zero, would mean that we do not have normally distributed data

C82MST Statistical Methods 2 - Lecture 4 21 Data transformations What can we do in order to meet the assumption of the analysis of variance? In order to return our data to normality and establish homogeneity of variance we can use transformations. These are simply mathematical operations that are applied to the data before we conduct an analysis of variance. However, there are three circumstances where no transformation to the data will work: Variances are heterogenous Distributions are heterogenous Variances are heterogeneous and distributions are heterogeneous

C82MST Statistical Methods 2 - Lecture 4 22 Data transformations The following table shows the kinds of transforms that we can use They depend on the amount of skew in the data Where K is the largest number in the data set plus 1 Moderate 1.96≤z≤2.33 Substantial 2.34≤z≤2.56 Severe z>2.56 Positive Skew Square RootLogarithmReciprocal Negative Skew Square Root (K-X) Logarithm (K-X) Reciprocal (K-X)

C82MST Statistical Methods 2 - Lecture 4 23 Transforming data Transforming data reduces the probability of making a type II error A type II error occurs when we fail to reject the null hypothesis when it is false If an assumption is broken, ANOVA fails gracefully: we will miss real effects (type II) but we will not increase our rate of making claiming effects that do not exist (type I) Data should be transformed when either the data is not homogenous or not normal Solving the homogeneity problem often solves the normality problem and vice versa

C82MST Statistical Methods 2 - Lecture 4 24 Transforming data What happens when transforming the data is impossible? In general we proceed with the analysis but advise caution to the reader when reporting the results This is particularly important if the observed F value has an associated probability, p, such that 0.1>p>0.01 In these circumstances it is difficult to know whether a type I error or a type II error is being made or if no error is being made at all.