Slide 9- 1 Copyright © 2010 Pearson Education, Inc. Active Learning Lecture Slides For use with Classroom Response Systems Business Statistics First Edition by Sharpe, De Veaux, Velleman Chapter 9: Sampling Distributions and the Normal Model
Slide 9- 2 Copyright © 2010 Pearson Education, Inc. The sampling distribution and distribution of the sample are synonymous. A. True B. False
Slide 9- 3 Copyright © 2010 Pearson Education, Inc. The sampling distribution and distribution of the sample are synonymous. A. True B. False
Slide 9- 4 Copyright © 2010 Pearson Education, Inc. The variability we expect to see from one random sample to another is called ___________. A. the variance B. the standard deviation C. the sampling error D. the distribution variance
Slide 9- 5 Copyright © 2010 Pearson Education, Inc. The variability we expect to see from one random sample to another is called ___________. A. the variance B. the standard deviation C. the sampling error D. the distribution variance
Slide 9- 6 Copyright © 2010 Pearson Education, Inc. A certain population is approximately normal. We want to estimate its mean, so we collect a sample. Which of the following is true? I. The distribution of our sample data will be approximately normal. II. The sampling distribution of the sample means will be approximately normal. III. The variability of the sample means will be smaller when n is large. A. I only B. I and II only C. II and III D. I, II, and III
Slide 9- 7 Copyright © 2010 Pearson Education, Inc. A certain population is approximately normal. We want to estimate its mean, so we collect a sample. Which of the following is true? I. The distribution of our sample data will be approximately normal. II. The sampling distribution of the sample means will be approximately normal. III. The variability of the sample means will be smaller when n is large. A. I only B. I and II only C. II and III D. I, II, and III
Slide 9- 8 Copyright © 2010 Pearson Education, Inc. The Central Limit Theorem (CLT) states that the sampling distribution of the sample mean (and sample proportion) from random samples is approximately Normal for any n, regardless of the distribution of the population, as long as the observations are independent. A. True B. False
Slide 9- 9 Copyright © 2010 Pearson Education, Inc. The Central Limit Theorem (CLT) states that the sampling distribution of the sample mean (and sample proportion) from random samples is approximately Normal for any n, regardless of the distribution of the population, as long as the observations are independent. A. True B. False
Slide Copyright © 2010 Pearson Education, Inc. Which of the following is not an assumption or condition that needs to be checked for application of the Central Limit Theorem to the distribution of sample proportions? A. Independence B. Randomization C. Sample Size D. Nearly Normal Condition
Slide Copyright © 2010 Pearson Education, Inc. Which of the following is not an assumption or condition that needs to be checked for application of the Central Limit Theorem to the distribution of sample proportions? A. Independence B. Randomization C. Sample Size D. Nearly Normal Condition
Slide Copyright © 2010 Pearson Education, Inc. A certain population is strongly skewed to the right. We want to estimate its mean, so we will collect a sample. Which should be true if we use a large sample rather than a small one? I. The distribution of our sample data will be closer to normal. II. The sampling distribution of the sample means will be closer to normal. III. The variability of the sample means will be greater. A. I only B. II only C. III only D. II and III only
Slide Copyright © 2010 Pearson Education, Inc. A certain population is strongly skewed to the right. We want to estimate its mean, so we will collect a sample. Which should be true if we use a large sample rather than a small one? I. The distribution of our sample data will be closer to normal. II. The sampling distribution of the sample means will be closer to normal. III. The variability of the sample means will be greater. A. I only B. II only C. III only D. II and III only
Slide Copyright © 2010 Pearson Education, Inc. Assume that electrical problems affect 14% of new automobiles. A mechanic conducts diagnostic tests on 128 new cars on the lot. Which should be true? I.The sampling distribution of the sample proportions is approximately normal. II.The mean of the sampling distribution is III.The standard deviation of the sampling distribution is.03. A. I only B. I and II only C. I and III only D. I, II and III
Slide Copyright © 2010 Pearson Education, Inc. Assume that electrical problems affect 14% of new automobiles. A mechanic conducts diagnostic tests on 128 new cars on the lot. Which should be true? I.The sampling distribution of the sample proportions is approximately normal. II.The mean of the sampling distribution is III.The standard deviation of the sampling distribution is.03. A. I only B. I and II only C. I and III only D. I, II and III
Slide Copyright © 2010 Pearson Education, Inc. Assume that the time brokers spend with new clients varies with mean µ = 45 minutes and standard deviation σ = 10 minutes. Suppose a sample of 64 brokers was selected and the times spent with new clients recorded. Which should be true? I.The sampling distribution of the sample means is approximately normal. II.The mean of the sampling distribution is 45 minutes. III.The standard deviation of the sampling distribution is 1.25 minutes. A. I and II only B. I and III only C. II and III only D. I, II and III
Slide Copyright © 2010 Pearson Education, Inc. Assume that the time brokers spend with new clients varies with mean µ = 45 minutes and standard deviation σ = 10 minutes. Suppose a sample of 64 brokers was selected and the times spent with new clients recorded. Which should be true? I.The sampling distribution of the sample means is approximately normal. II.The mean of the sampling distribution is 45 minutes. III.The standard deviation of the sampling distribution is 1.25 minutes. A. I and II only B. I and III only C. II and III only D. I, II and III