Unified Description of Bound and Unbound States -- Resolution of Identity -- K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (2)

Slides:



Advertisements
Similar presentations
Structure of Resonance and Continuum States Hokkaido University Unbound Nuclei Workshop Pisa, Nov. 3-5, 2008.
Advertisements

Unstable Nuclei and Many-Body Resonant States Unstable Nuclei and Many-Body Resonant States Kiyoshi Kato Nuclear Reaction Data Centre, Faculty of Science,
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Spectroscopy at the Particle Threshold H. Lenske 1.
NuPAC Physics at the proton and neutron drip lines Theoretical perspectives Angela Bonaccorso.
Nicolas Michel Importance of continuum for nuclei close to drip-line May 20th, 2009 Description of drip-line nuclei with GSM and Gamow/HFB frameworks Nicolas.
Deeply Bound Pionic States in Sn at RIBF N. Ikeno (Nara Women’s Univ. M1) J. Yamagata-Sekihara (IFIC, Valencia Univ.) H. Nagahiro (Nara Women’s Univ.)
Study of Weakly Bound Nuclei with an Extended Cluster-Orbital Shell Model Hiroshi MASUI Kitami Institute of Technology, Kitami, Japan K. Kato Hokkaido.
1 Multistep Coulomb & Nuclear Breakup of Halo Nuclei Ian Thompson, Surrey University, United Kingdom; with Surrey: Jeff Tostevin, John Mortimer, Brian.
Beta-decay directly to continuum K Riisager Dept. of Physics and Astronomy Aarhus University.
John Daoutidis October 5 th 2009 Technical University Munich Title Continuum Relativistic Random Phase Approximation in Spherical Nuclei.
Possibilities for Nuclear Physics at the Madrid Tandem Hans O. U. Fynbo Department of Physics and Astronomy University of Aarhus, Denmark Nuclear physics.
Probing nuclear potential with reactions Krzysztof Rusek Heavy Ion Laboratory, University of Warsaw, The Andrzej Soltan Institute for.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
Completeness of the Coulomb eigenfunctions Myles Akin Cyclotron Institute, Texas A&M University, College Station, Texas University of Georgia, Athens,
K - pp studied with Coupled-channel Complex Scaling method Workshop on “Hadron and Nuclear Physics (HNP09)” Arata hall, Osaka univ., Ibaraki,
The Theory of Partial Fusion A theory of partial fusion is used to calculate the competition between escape (breakup) and absorption (compound-nucleus.
Spectroscopic factors and Asymptotic Normalization Coefficients from the Source Term Approach and from (d,p) reactions N.K. Timofeyuk University of Surrey.
理研.08 少数体系アプローチの研究と今後の課題 Few-Body Approach and Future Problems ・ NN interaction is characterized by strong short-range repulsion and long-range tensor.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
Extended optical model analyses of elastic scattering and fusion cross sections for 6, 7 Li Pb systems at near-Coulomb-barrier energies by using.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
RCNP.08 Breakup of halo nuclei with Coulomb-corrected eikonal method Y. Suzuki (Niigata) 1.Motivation for breakup reactions 2.Eikonal and adiabatic approximations.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Application of coupled-channel Complex Scaling Method to Λ(1405) 1.Introduction Recent status of theoretical study of K - pp 2.Application of ccCSM to.
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
1 A microscopic version of CDCC P. Descouvemont Université Libre de Bruxelles, Belgium In collaboration with M.S. Hussein (USP) E.C. Pinilla (ULB) J. Grineviciute.
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Scales of critically stable few-body halo system Tobias Frederico Instituto Tecnológico de Aeronáutica São José dos Campos - Brazil  Marcelo T. Yamashita.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Faddeev three-body calculation of triple- alpha reaction Souichi Ishikawa Hosei University, Japan 1 The Fifth Asia-Pacific Conference on Few-Body Problems.
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
What is a resonance? K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (1)
Mesut Karakoç May 31st, 2012 TAMU-Commerce & Akdeniz U. - Turkey Collaborators: Carlos Bertulani (TAMU-Commerce) Adriana Banu (James Madison U.) Livius.
Coulomb Breakup and Pairing Excitation of Two-Neutron Halo Nucleus 11 Li Niigata University S. Aoyama RCNPT. Myo Hokkaido UniveristyK. Kato RikenK. Ikeda.
Study on ν-A Reaction Cross Sections within CRPA Jeong-Yeon LEE and Yeong-Duk KIM Sejong University, KOREA.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
Breakup of 22 C in a three-body model E. C. Pinilla 1, and P. Descouvemont 2 1 Universidad Nacional de Colombia, Bogotá, Colombia 2 Université Libre de.
Fusion of light halo nuclei
Nicolas Michel CEA / IRFU / SPhN / ESNT April 26-29, 2011 Isospin mixing and the continuum coupling in weakly bound nuclei Nicolas Michel (University of.
Nuclear density functional theory with a semi-contact 3-body interaction Denis Lacroix IPN Orsay Outline Infinite matter Results Energy density function.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
Adiabatic hyperspherical study of triatomic helium systems
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Non-Linear Effects in Strong EM Field Alexander Titov Bogoliubov Lab. of Theoretical Physics, JINR, Dubna International.
Cluster-Orbital Shell Model と Gamow Shell Model Hiroshi MASUI Kitami Institute of Technology Aug. 1-3, 2006, KEK 研究会 「現代の原子核物理 ー多様化し進化する原子核の描像ー」
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
多体共鳴状態の境界条件によって解析した3α共鳴状態の構造
This relation has been checked in numerous precision experiments.
Two-body force in three-body system: a case of (d,p) reactions
Resonance and continuum in atomic nuclei
Tensor optimized shell model and role of pion in finite nuclei
Open quantum systems.
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Role of Pions in Nuclei and Experimental Characteristics
軽い不安定核における 共鳴状態の構造 明 孝之 大阪工業大学 1 KEK 理論セミナー  
Generalized S-Matrix in Mixed Representation
Breakup of weakly bound nuclei and its influence on fusion
Few-body approach for structure of light kaonic nuclei
Jost関数法と共鳴部分幅および仮想状態
R. Lazauskas Application of the complex-scaling
Nicolas Michel (ESNT/SPhN/CEA) Kenichi Matsuyanagi (Kyoto University)
Presentation transcript:

Unified Description of Bound and Unbound States -- Resolution of Identity -- K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (2)

1. Resolution of Identity in the Complex Scaling Method Continuum statesBound states Resonant states non-resonant continuum states L R.G. Newton, J. Math. Phys. 1 (1960), 319 Completeness Relation (Resolution of Identity) Among the continuum states, resonant states are considered as an extension of bound states because they result from correlations and interactions.

Separation of resonant states from continuum states Deformation of the contour Resonant states Ya.B. Zel’dovich, Sov. Phys. JETP 12, 542 (1961). N. Hokkyo, Prog. Theor. Phys. 33, 1116 (1965). Convergence Factor Method Matrix elements of resonant states T. Berggren, Nucl. Phys. A 109, 265 (1968) Deformed continuum states

Complex scaling method coordinate: momentum: r B. Gyarmati and T. Vertse, Nucl. Phys. A160, 523 (1971). re iθ T. Myo, A. Ohnishi and K. Kato. Prog. Theor. Phys. 99(1998)801] Rotated Continuum statesResonant states J. Aguilar and J.M.Combes, J. Math. Phys. 22, 269 (1971) E.Balslev and J.M.Combes, J. Math. Phys. 22, 280 (1971)

k k EE Single Channel system B.Giraud and K.Kato, Ann.of Phys. 308 (2003), 115. Resolution of Identity in Complex Scaling Method

Eigenvalues of H(θ) with a L 2 basis set (L 2 basis set ; Gaussian basis functions)

b1b1 b2b2 b3b3 r1r1 r2r2 r3r3 Coupled Channel system Three-body system E| B.Giraud, K.Kato and A. Ohnishi, J. of Phys. A37 (2004),11575 Bany-body system

9 Li+n+n 10 Li(1 + )+n 10 Li(2 + )+n Resonances T. Myo, A. Ohnishi and K. Kato, Prog. Theor. Phys. 99 (1998), 801. in CSM 10 Li : 9 Li(3/2 - ) +n(p 3/2 )

Complex Scaled Green’s Functions Green’s operator Resolution of Identity Complex Scaled Green’s function Complex scaled Green’s operator

2. Strength Functions and Coulomb Breakup Reaction

Coulomb Breakup Reactions of Three-Body Systems (two- neutron halo systems) Breakup Mechanism: Direct or Sequential ? Simultaneous description of Structure and Reaction Neutron-correlation in 2-neutron halo states

T. Myo, K. Kato, S. Aoyama and K. Ikeda, PRC63(2001),

Coulomb breakup strength of 6 He 6 He : 240MeV/A, Pb Target (T. Aumann et.al, PRC59(1999)1252) T.Myo, K. Kato, S. Aoyama and K. Ikeda PRC63(2001)

Coulomb breakup cross section of 11 Li T. Nakamura et al., Phys. Rev. Lett. 96, (2006)

A.T.Kruppa, Phys. Lett. B 431 (1998), A.T. Kruppa and K. Arai, Phys. Rev. A59 (1999), 2556 K. Arai and A.T. Kruppa, Phys. Rev. C 60 (1999) Definition of LD: 3. Continuum level density

1 Resonance: Continuum: Discreet distribution RI in complex scaling

2θ EE εIεI εIεI Discretized Continuum States in the Complex Scaling Method

Continuum Level Density: Basis function method:

Phase shift calculation in the complex scaled basis function method In a single channel case, S.Shlomo, Nucl. Phys. A539 (1992), 17.

Phase shift of 8 Be=  +  calculated with discretized app. Base+CSM: 30 Gaussian basis and  =20 deg.

Continuum Level Density of 3α system α1α1 α2α2 α3α3 8 Be α 1 - α 2 : resonance + continuum (α 1 α 2 )- α 3 : continuum α 1 - α 2 : continuum (α 1 α 2 )- α 3 : continuum [Ref.] S.Shlomo, NPA 539 (1992) 17.

(2 +) Continuum Level

4. Complex scaled Lippmann-Schwinger equation H 0 =T+V C V ; Short Range Interaction Solutions of Lippmann-Schwinger Equation ( Ψ 0 ; regular at origin ) Outgoing waves Complex Scaling A. Kruppa, R. Suzuki and K. Kato, phys. Rev.C75 (2007),

● Lines : Runge-Kutta method ● Circles : CSM+Base 4 He: ( 3 He+p)+( 3 He+n) Coupled-Channel Model

Complex-scaled Lippmann-Schwinger Eq. Direct breakup Final state interaction (FSI) CSLM solution B(E1) Strength

Two-neutron distribution of 6 He (T. Aumann et.al, PRC59(1999)1252)

Summary and conclusion The resolution of identity in the complex scaling method is presented to treat the resonant states in the same way as bound states. The complex scaling method is shown to describe not only resonant states but also continuum states on the rotated branch cuts. We presented several applications of the extended resolution of identity in the complex scaling method; strength functions of the Coulomb break reactions, continuum level density and three-body scattering states. Many-body resonant states of He-isotopes are studied.

Collaborators Y. Kikuchi, K. Yamamoto, A. Wano, T. Myo, M. Takashina, C. Kurokawa, R. Suzuki, K. Arai, H. Masui, S. Aoyama, K. Ikeda, A. Kruppa. B. Giraud